
PHYSICAL REVIEW C 108, 024612 (2023)

Systematic single-folding optical potential for 6Li and 7Li based on KD02 potentials
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In the present research, we utilized the single-folding model to develop a systematical optical potential for
6Li and 7Li, employing the nucleon-nucleus global potentials introduced by Koning and Delaroche (KD02). We
analyzed the elastic scattering angular distributions of 6Li and 7Li on targets with mass numbers ranging from
24 to 209 using the single-folding potential. Incident energies between 5 and 55 MeV/nucleon were considered.
The real part of the single-folding model potential was renormalized with one free parameter, while leaving its
imaginary part unchanged. The resulting renormalization factors of the single-folding model potentials show
consistent systematics. Our approach effectively reproduced the elastic scattering and reaction cross sections of
the targets in our current study. In addition, we also compared the prediction abilities of our systematic optical
potentials with those of others.
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I. INTRODUCTION

The central objective of nuclear physics is to understand
nuclear structures through nuclear reactions. Optical model
potential (OMP), which is widely utilized in studying various
nuclear reactions, including elastic scattering, inelastic scat-
tering, transfer, and breakup reactions [1–3], is a crucial input
for theoretical modeling of nuclear reactions [4–6].

In the optical model, the scattering wave function χ (+)

approximates the elastic component of ξ
(+)
0 of the many-body

wave function of both the projectile and target, assuming that
both are at their ground states. In simpler terms, |χ (+)(�r)|2 is
an estimation of the probability of the two nuclei, a + A to be
positioned in their ground states and separated by �r.

In many cases, the OMP is determined by fitting an ana-
lytical form, such as the Woods-Saxon form, to experimental
data. However, there is a lack of relevant experimental data
when dealing with exotic nuclei far from the beta stability. In
such cases, systematic OMP provides significant value and al-
lows for the prediction of nucleon-nucleus or nucleus-nucleus
potentials when no experimental data are available. Seeking
a systematic optical potential for light particles has been a
longstanding goal in nuclear physics research. To this end,
numerous studies have focused on determining the optical
parameters for proton, neutron, deuteron, triton, and α parti-
cles [7–15]. However, describing the interaction of the weakly
bound projectiles with target nuclei across a range of incident
energies and reaction systems presents unique challenges. To
address this challenge, Cook proposed a global OMP for
6Li and 7Li that characterizes both the real and imaginary
components of the potential using the Woods-Saxon form
[16], which was later improved by Zagatto et al. [17]. Xu
et al. proposed a more globally applicable phenomenological
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OMP for the same systems in 2018 [18,19]. Additionally,
global optical potentials for 6Li and 7Li have been developed
using the single-folding model with a range of target masses
and large energy. These optical potentials are successful in
reproducing observed scattering data by mimicking the be-
havior of the wave function outside the interaction region,
χ (+)(�r) ≈ ξ

(+)
0 (�r) when r > Rint. However, there are ambigu-

ities in their use in reaction calculations, such as the distorted
wave method, since the results of these depend on the wave
function for r < Rint.

In the distorted wave method, systematic ambiguities can
be reduced for r < Rint if all the potentials used in the calcu-
lations are based on the same interactions. This is exemplified
in the inclusive breakup reaction a + A → b + B∗, where B∗
represents any possible state of the x + A system. When con-
sidering this inclusive breakup reaction in the distorted wave
Born approximation (DWBA) form and comparing it with the
continuum-discretized coupled-channels (CDCC) form, the
selection of the optical potential for a + A becomes crucial
[20]. In such scenarios, employing single-folding potentials
offers several advantages. It helps mitigate systematic errors,
especially those originating from the inner region of the scat-
tering wave function of a + A as required by DWBA. This is
particularly pertinent in the case of the effective interactions
utilized in the CDCC calculation, which are derived from the
same single folding potential. The inner segment of the wave
function cannot be determined experimentally, yet its influ-
ence on the computation of final observables is considerable.
This effect becomes particularly significant when the surface
approximation is invalid [21].

We applied the single-folding model in this study to gen-
erate new systematic optical potentials. These potentials were
derived from the Koning and Delaroche (KD02 [11]) global
nucleon-nucleus optical potential, which is widely used in re-
action calculations. Incorporating this new systematic optical
potential consistently into the required effective interactions
for reaction calculations can significantly reduce systematic
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ambiguities. In this study, we employ the 6,7Li-induced re-
actions as examples to investigate the potential application
of the single-folding potential. In general, this model can
be implemented for various types of projectiles, thereby en-
abling the derivation of a systematic potential in reaction
calculations. This single folding potential involves folding
the nucleon-nucleus interaction with the density distribution
of the projectile to obtain the single-folding model potential.
This potential is then renormalized to obtain the effective
interaction that describes the nucleus-nucleus elastic scatter-
ing and reaction cross sections. The systematic nature of the
obtained normalization factors is of significant relevance for
nuclear physics [22].

In previous studies, renormalization was made to both the
real and imaginary parts of the single-folding model potential
[14,23]. However, our investigation showed that modifying
the imaginary part of the potential did not lead to a note-
worthy improvement in the systematic optical potential. This
finding can also be justified based on the CDCC calculation
reported in Ref. [24]. In this reference, the authors assert
that the coupled channel effect of the breakup channels is
accurately accounted for in the optical potential calculation.
They achieve this by reducing the real part of the double
folding potential strength by a factor of two, with minimal
adjustments required for the imaginary potential. Therefore,
we focused on scrutinizing the systematics of the real part
of the single-folding potential that implies determining one
free parameter by fitting nuclear scattering data. The quality
of fitting is often a tradeoff between the number of parameters
and fitting quality; too few parameters result in poor fitting
quality, whereas too many parameters lead to unsystematic
potentials. We were able to obtain a systematic optical po-
tential, which has similar predictive capabilities to previous
works, with one less parameter used. Additionally, we inves-
tigated the dependence of these renormalization factors on the
ratio of incident energy in the center of mass (c.m) frame to
the Coulomb barrier, as nucleus-nucleus scattering is largely
influenced by the Coulomb potential [25–27].

The universal applicability of the KD02 optical potential
across a broad range of energy and target mass numbers makes
our systematic optical potential suitable for studying nuclear
reactions over a wide range of energies, spanning from a few
to several hundreds of MeV and for target mass numbers from
24 to 209. The KD02 optical potential is widely used in the-
oretical calculations and has demonstrated good performance
in predicting nucleon scattering. Therefore, the renormaliza-
tion of the single-folding model potential primarily results
from the compound effect of the nucleus.

This paper is organized as follows. In Sec. II, we provide an
overview of the single-folding model. In Sec. III, we present
the methods for conducting optical model analysis on exper-
imental data and determining the systematic optical potential
renormalization factors for 6Li and 7Li. To evaluate the per-
formance of our systematic optical potential, we compare the
angular distributions of elastic scattering and reaction cross
sections with optical model calculations in Sec. IV. In this
section, we also compare our findings with other phenomeno-
logical optical potentials. Lastly, we summarize our results
and draw conclusions in Sec. V.

FIG. 1. Coordinates used in single-folding model calculations.

II. THE SINGLE-FOLDING MODEL POTENTIAL

In this section, we present a concise overview of the
single-folding model. The potential given by this model is
expressed as

USF (|R|, Elab) =
∑
i=n,p

∫
ρi(|r|)UiT (|r′|, Ei )dr, (1)

where R is the vector between the projectile and the target,
as depicted in Fig. 1. ρi(|r|) is the density of nucleons (i = p
for proton and i = n for neutron) in the projectile at position
r from its center of mass. The term UiT (|r′|, Ei ) is the optical
potential for the nucleon-target system, which is dependent on
the modulus of vector r′ and the incident energy per nucleon of
the projectiles represented by Ei, where r′ = R + r, and Ei =
Elab/Ap. Here, Ap is the mass number of the projectile.

The density of nucleons, ρi, in the projectile was obtained
through relativistic mean field calculations using DD-ME2
interactions [28]. For nucleon-nucleus optical potential, UiT ,
we chose the KD02 optical potential [11] in our study. The
KD02 optical potential consists of volume, surface, and spin-
orbital terms, thus offering a reliable method of describing
nucleon-nucleus scattering. In this study, we only analyzed
the angular distributions for elastic scattering and reaction
cross sections, which are often considered insensitive to the
spin-orbital part [29]. Consequently, the spin-orbital part of
the KD02 potential is not included in our calculation. Then
the optical potential, UiT , can be expressed as

UiT (r′, Ei ) = −VV (r′, Ei ) − iWV (r′, Ei )

− iWD(r′, Ei ), (2)

where r′ = |r′|, which is the distance between a nucleon
and the target. VV and WV are the real and imaginary
components of the volume term, respectively. The surface
component is captured by WD. All components are expressed
by energy-dependent well depths, VV , WV , and WD, and
energy-independent radial parts f , namely,

VV (r′, Ei ) = VV (Ei ) f (r′, RV , aV ),

WV (r′, Ei ) = WV (Ei ) f (r′, RV , aV ),

WD(r′, Ei ) = −4aDWD(Ei )
d

dr′ f (r′, RD, aD). (3)

The form factor f (r′, Ri, ai ) takes Woods-Saxon shape,
which is given by

f (r′, Ri, ai ) = 1

1 + exp
[ r′−Ri

ai

] , (4)
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where Ri, which is determined by the atomic mass number
AT of the target nucleus, is given by Ri = riA

1/3
T . ri is the

radius parameter. The symbol ai denotes the diffuseness pa-
rameter. All necessary information regarding the calculations
of the depths, VV , WV , and WD, as well as their corresponding
geometry parameters, ri and ai, are available in Ref. [11].

In the single-folding model approach, we derive the nu-
clear portion of the nucleus-nucleus potential by utilizing
Eq. (1). To acquire the overall potential, we must consider
the inclusion of the Coulomb potential. Additionally, we must
renormalize the single-folding model potential to elucidate
the nucleus-nucleus elastic scattering and the reaction cross
sections owed to the composite nature of the projectile nucleus
[30]. Consequently, the complete nucleus-nucleus potential,
in our single-folding model approach, adopts the following
form:

U (R, Elab) = NrRe[USF (R, Elab)]

+ iIm[USF (R, Elab)] + VC (R), (5)

where Nr represents the renormalization factors for the real
part of the single-folding potential. The Coulomb potential,
VC , is calculated in the standard way using a radius RC =
rC (A1/3

P + A1/3
T ). Throughout our study, we set rC = 1.2 fm. In

comparison to halo nucleus induced reactions, breakup effects
in the Li-induced reactions we studied are weaker. This study
aims to investigate the elastic scattering of 6,7Li, where we
expect less pronounced breakup effects. However, if neces-
sary, the additional surface imaginary interaction discussed in
Ref. [31] can be used to add the breakup effects. Only the
real part of the single folding potential is renormalized in this
study. The change in the real part is primarily caused by the
dynamic polarization potential resulting from the electric field
of the target polarizing the projectile. This Coulomb dynamic
polarization potential can be complex, where the imaginary
part reflects the effects of the breakup. Our focus is on the
6,7Li induced reaction, where the breakup effects are not as
strong as in halo nucleus induced reactions. In addition, the
renormalization of the real part of the single folding potential
is consistent with the results obtained in Ref. [32]. Reference
[32] also normalizes the real part of α + 208Pb and t + 208Pb
potentials by a factor of 0.6 in performing the CDCC calcula-
tion, which reproduces experimental data.

III. ANALYSIS OF 6Li and 7Li SYSTEMATIC
OPTICAL POTENTIAL

A. Procedures of data analysis

This subsection aims to determine the optimal normaliza-
tion factors by fitting experimental data of nucleus-nucleus
elastic scattering and establish their energy dependence.
Therefore, in the first step, we gathered the experimental data
of elastic scattering angular distribution of 6Li and 7Li. The
relevant experimental data and their references for 6Li and 7Li
are listed in Tables I and II, respectively.

This study concentrates on targets with atomic mass num-
bers within the range of 24 to 209, and incident projectile
energy ranging from 5 to 55 MeV/nucleon. We retrieved the
experimental data from the EXFOR/CSISRS nuclear reaction

TABLE I. The experimental data analyzed in this work, along
with their references, the ratio of the incident energy in the center
of mass coordinate system to the Coulomb barrier, and the resulting
renormalization factors for 6Li are presented.

Target Elab/MeV Er Nr Ref.

24Mg 72.7 9.561 0.416 [38]
240.0 31.563 0.597 [40]

25Mg 34.0 4.543 0.327 [42]
26Mg 34.0 4.613 0.413 [42]

36.0 4.884 0.418 [43]
72.7 9.863 0.500 [38]

27Al 34.0 4.286 0.330 [42]
28Si 34.0 4.007 0.457 [45]

60.0 7.071 0.394 [47]
75.0 8.839 0.425 [47]
90.0 10.606 0.385 [47]
99.0 11.667 0.434 [34]

210.0 24.748 0.648 [52]
240.0 28.284 0.629 [40]
318.0 37.476 0.711 [52]

39K 34.0 3.226 0.399 [53]
37.0 3.510 0.417 [53]

40Ca 99.0 8.957 0.477 [34]
156.0 14.114 0.533 [35]
210.0 19.000 0.561 [52]
240.0 21.714 0.546 [54]

58Ni 34.0 2.400 0.334 [55]
73.7 5.202 0.404 [49]
90.0 6.353 0.523 [48]
99.0 6.988 0.406 [34]

240.0 16.941 0.521 [54]
89Y 60.0 3.351 0.367 [57]
90Zr 34.0 1.854 0.282 [39]

60.0 3.271 0.273 [57]
70.0 3.817 0.373 [41]
73.7 4.018 0.377 [49]
99.0 5.398 0.356 [34]

156.0 8.505 0.459 [35]
210.0 11.450 0.341 [52]
240.0 13.085 0.409 [54]

91Zr 34.0 1.860 0.333 [39]
92Zr 70.0 3.840 0.450 [41]
94Zr 70.0 3.864 0.459 [41]
96Zr 70.0 3.886 0.463 [41]
112Sn 35.0 1.594 0.436 [44]
116Sn 35.0 1.609 0.547 [44]

240.0 11.036 0.505 [44]
120Sn 44.0 2.042 0.239 [46]

90.0 4.177 0.651 [48]
124Sn 73.7 3.452 0.389 [49]
208Pb 31.0 0.981 0.472 [50]

33.0 1.044 0.398 [51]
35.0 1.107 0.349 [50]
39.0 1.234 0.416 [51]
43.0 1.360 0.153 [50]
46.0 1.455 0.129 [50]
73.7 2.332 0.351 [49]
90.0 2.847 0.558 [48]
99.0 3.132 0.328 [34]

156.0 4.936 0.406 [35]
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TABLE I. (Continued.)

Target Elab/MeV Er Nr Ref.

210.0 6.644 0.424 [52]
209Bi 32.0 1.001 0.416 [56]

34.0 1.063 0.297 [56]
36.0 1.126 0.339 [56]
38.0 1.188 0.292 [56]
40.0 1.251 0.279 [56]
44.0 1.376 0.372 [56]
50.0 1.564 0.299 [56]

database [33], with the exception of 6Li at 99 and 156 MeV,
and 7Li at 52 and 88.7 MeV, which we extracted from fig-
ures in Refs. [34–37], respectively. We utilized uncertainties
provided for experimental data points in our analysis. For
consistency, in cases where uncertainties were not provided,
we used uniform uncertainties of 5% for the data points. We
employed the traditional minimum χ2/N (N being the number
of experimental data points) method to fit the experimental
data, and to determine the potential renormalization factors,
Nr , for each data set. We used SFRESCO, a computer code
that combines FRESCO [64] and the search algorithm MINUIT

TABLE II. The experimental data analyzed in this work, along
with their references, the ratio of the incident energy in the center
of mass coordinate system to the Coulomb barrier, and the resulting
renormalization factors for 7Li are presented.

Target Elab/MeV Er Nr Ref.

24Mg 88.0 11.602 0.430 [37]
26Mg 88.0 11.987 0.462 [37]
28Si 36.0 4.234 0.408 [43]

350.0 41.164 0.676 [58]
40Ca 34.0 3.091 0.373 [59]

88.0 8.063 0.262 [37]
44Ca 34.0 3.193 0.437 [59]
48Ca 34.0 3.286 0.413 [59]

88.0 8.573 0.269 [37]
54Fe 36.0 2.719 0.348 [59]

42.0 3.172 0.353 [59]
48.0 3.625 0.391 [59]

56Fe 34.0 2.597 0.380 [59]
58Ni 34.0 2.626 0.353 [59]

42.0 3.244 0.302 [60]
60Ni 34.0 2.449 0.389 [59]
89Y 60.0 3.397 0.248 [57]
90Zr 34.0 1.879 0.328 [59]
116Sn 35.0 1.633 0.398 [61]
118Sn 48.0 2.251 0.383 [16]
142Nd 52.0 2.109 0.416 [36]
144Sm 35.0 1.375 0.324 [62]

40.8 1.603 0.255 [62]
52.0 2.044 0.426 [36]

208Pb 33.0 1.061 0.249 [51]
37.55 1.208 0.372 [63]
39.0 1.254 0.526 [51]
42.55 1.368 0.365 [63]
52.0 1.672 0.449 [36]
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FIG. 2. (a) and (b) present the renormalization factors, Nr , as
a function of the ratio of the incident energy in the c.m. frame to
Coulomb barrier, denoted as Er , for 6Li and 7Li, respectively. The
symbols represent the fitted renormalization factors, Nr . The dashed
line indicates the fitted linear function.

[65], to fit optical potentials. We enforced the maximum and
minimum values of Nr at 1.0 and 0.01, respectively, to pre-
vent unrealistically large or small values. The resulting fitted
values of Nr for 6Li and 7Li are recorded in Tables I and II,
respectively.

We utilized the fitted Nr values that yielded optimal
matches for every experimental angular distribution to ana-
lyze the relationship between these factors and the projectile
bombarding energies. Due to the different Coulomb barrier
energies, the most effective method for comparison is to rep-
resent the reaction energy as a ratio of incident energy in
the center-of-mass coordinate system to the Coulomb barrier,
where a ratio less than 1 signifies bombarding energies below
the barrier, while a ratio greater than 1 indicates reactions
occurring at energies above the barrier. To accomplish this,
we introduced the variable Er , defined as

Er = Ec.m./VCB, (6)

where Ec.m. represents the incident energy of the projectile
in the c.m. frame, while VCB denotes the Coulomb barrier.
Notably, Er is a dimensionless value. Details on calculating
VCB are available in Refs. [27].

In Fig. 2, we presented the values of Nr for 6Li (a) and 7Li
(b), estimated through circles symbols, as a function of Er . As
illustrated, there is a strong linear correlation between Nr and
Er for 6Li and 7Li, as long as the values of Er fall within the 1
to 50 range. Based on this observation, a linear function was
utilized to estimate the Nr values of 6Li and 7Li, as given by

Nr (6Li) = 0.01019Er + 0.3396, (7)

Nr (7Li) = 0.00705Er + 0.3489. (8)
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FIG. 3. The real and imaginary parts of the optical potential for
the 6Li + 90Zr system, n + 90Zr system, and p + 90Zr system at an
incident energy of 10 MeV/u. The neutron optical potential of KD02
is represented by the dotted line, while the proton optical potential is
represented by the dashed line. The result of directly summing the
three neutron optical potentials and three proton optical potentials
is indicated by the dot-dashed line. Our current optical potential for
6Li + 90Zr, which is the systematic optical potential with the real part
adjusted using Eq. (8), is represented by the solid line. Cook’s optical
potential is indicated by the dot-dot-dashed line.

The resulting fit is incorporated as dashed lines within Fig. 2.
While much of the provided experimental data for 7Li had
incident energies below 88.7 MeV, the scattering 28Si at
350 MeV depicted an ascent in Nr as Er increased. To ac-
count for this effect, we assumed that this element possesses
a relationship comparable to that observed in 6Li, and thus
we incorporated a linear function to estimate the Nr values of
7Li according to Eq. (9). By adopting linear functions, we in-
tend to capture the energy dependence of the renormalization
factors without specific physical implications. Our findings
indicate that the energy dependence of Nr corresponds qual-
itatively to the observations described in Ref. [23]. We note
that the parameters in Eqs. (8) and (9) enhance in accuracy as
the experimental data set becomes more extensive. As there
might be a lack of experimental data for 7Li at high ener-
gies, additional experimental data could necessitate significant
modifications in the parameters of Eq. (9).

B. Shapes and volume integrals of present potential

Figure 3 displays the current single-folding [i.e., the
real part of the optical potential obtained through Eq. (8)]
and Cook’s optical potentials for the 6Li + 90Zr system at
10 MeV/u represented by solid and dot-dot-dashed lines,

respectively. The proton and neutron optical potentials of
KD02 are also plotted as dotted and dashed lines, respectively.
Note that 6Li contains three protons and three neutrons. To
illustrate the effects of their combined potentials, we show the
sum of the three neutron optical potentials and the three proton
optical potentials with a dot-dashed line on the same figure.

The results in panel (a) of Fig. 3 reveal that the real part of
the current systematic optical potential is significantly lower
than the sum of the real parts of the three neutron and three
proton potentials. However, compared to Cook’s systematic
optical potential, the real part of the current systematic op-
tical potential has a similar magnitude, although there are
slight differences in their shape. Nevertheless, most heavy-ion
scattering data are only sensitive to the potential tail in the
vicinity of the strong absorption radius, which is usually about
Rstr = 1.5(A1/3

P + A1/3
T ) fm [66,67]. Therefore, a subplot is

included in Fig. 3(a) to provide a more detailed view of this
region. We observe that the real part of the current systematic
optical potential is similar to Cook’s systematic optical poten-
tial when R � 8.5 fm.

Figure 3(b) shows that the imaginary part of the current
systematic optical potential is nearly identical to Cook’s sys-
tematic optical potential when R � 5 fm. However, the results
obtained by directly adding the imaginary part of the three
neutron potentials and the three proton potentials are sig-
nificantly different from the current single-folding potential,
as depicted in Fig. 3(b). This difference indicates that the
distribution of nucleons within the projectile has a significant
impact on nucleus-nucleus scattering.

The volume integrals per nucleon of OMP have significant
implications for modeling nuclear interactions. Particularly in
the study of interactions between light heavy-ions with targets
[68]. In prior research, Greenlees et al. [69] demonstrated that
the volume integral per nucleon’s real part can attain high
accuracy based entirely on cross-sectional data. Additionally,
other studies [70,71], demonstrated that the imaginary part of
the volume integral per nucleon was also well determined by
the data. The real parts of the volume integrals per nucleon
(Jr) and imaginary parts of the volume integrals per nucleon
(Ji) of the OMP are defined as

Jr (E ) = 4π

APAT

∫
NrRe[USF (R, E )]R2dR, (9)

Ji(E ) = 4π

APAT

∫
Im[USF (R, E )]R2dR, (10)

where AP and AT represent the mass numbers of the projectile
and target, respectively.

Figure 4 presents the real part of the volume integrals per
nucleon of the optical potentials as a function of target mass
number. Panels (a), (b), and (c) represent incident energies of
5 MeV/u, 20 MeV/u, and 40 MeV/u, respectively. The cross
and plus symbols represent the real part of the volume inte-
grals per nucleon of our current optical potential for 6Li and
7Li, respectively. The solid and dot-dashed lines represent the
real part of the volume integrals per nucleon of Cook’s optical
potential for 6Li and 7Li, respectively. The same quantities
for the proton (dot line) and neutron (dashed line) are also
displayed at the same energy per nucleon. First, the behavior
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FIG. 4. Real part of the volume integrals per nucleon of dif-
ferent optical potential as a function of target mass number. (a),
(b), and (c) represent incident energy of 5 MeV/u, 20 MeV/u, and
40 MeV/u, respectively. The dotted line represents the volume inte-
grals per nucleon derived by the nucleon optical potential of KD02,
while the dashed line represents the volume integrals per nucleon
derived by the proton optical potential of KD02. The present optical
potentials for 6Li and 7Li are demonstrated by the plus symbols and
cross symbols, respectively. Cook’s optical potential for 6Li and 7Li
are represented by the solid and dot-dashed lines, respectively.

of our current systematic optical potential is the same as the
KD02 optical potential but the magnitude of the volume inte-
gral per nucleon in our current potential is noticeably smaller
than that of the neutron and proton potentials due to the
adjustments made to the real part of the single-folding model
potential. Second, as observed with Cook’s systematic optical
potential, the real part of the volume integral per nucleon of
our systematic optical potential also decreases with increasing
target mass number. However, it consistently has a smaller
magnitude than Cook’s.

Figure 5 displays the imaginary part of volume integrals
per nucleon. To start with, our study showcases the volume
integrals per nucleon of our optical potential for 6Li and
7Li exhibiting similar magnitudes and trends as reported by
KD02 and Cook’s optical potentials. The mass number of the
target increases, the imaginary part of the volume integrals
per nucleon of our optical potential for 6Li and 7Li decreases.
However, compared to Cook’s optical potential, this declining
trend in our optical potential occurs at a slower rate. Moreover,
when the incident energy increases, the imaginary part of the
volume integral per nucleon of our optical potential is larger
than that of Cook’s optical potential in regions with large mass
numbers of target nuclei.

Figures 4 and 5 also demonstrate that the real part of the
volume integral per nucleon of the optical potential does not
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FIG. 5. Same as Fig. 4 but for imaginary part.

exhibit significant variations with respect to the target nucleus
mass number, whereas the imaginary part of the volume in-
tegral per nucleon decreases evidently as the target nucleus
mass number increases.

IV. EXAMINATION OF PRESENT SYSTEMATIC
OPTICAL POTENTIAL

A. Elastic scattering angular distribution

To check the validity of our present systematic optical
potential, we first calculated the elastic scattering angular dis-
tribution for 6Li and 7Li using our current systematic potential
with the renormalization factors obtained from Eqs. (8) and
(9), respectively. We also performed calculations using Cook’s
potential [35] for comparison. Figures 6–12 present these re-
sults in detail. The circles in the figures represent experimental
data, while the solid and dashed lines are the calculated results
using our present optical potential and Cook’s, respectively.
Here, we use hollow circles to represent data points where
the ratio of the elastic scattering cross section to the Ruther-
ford scattering cross section is less than 1%. We consider
these points to be of less significance in theoretical analysis
compared to the solid circles, which have a ratio greater than
1%.

The elastic scattering angular distributions of 6Li were
computed for various targets and incident energies range.
Specifically, the scattering of 6Li at 34 MeV was computed
for 25,26Mg, 27Al, 28Si, 39K, 58Ni, 90,91Zr, and 209Bi targets,
and the elastic scattering angular distributions for incident
energies ranging from 35 to 39 MeV were calculated for
targets 26Mg, 39K, 112,116Sn, 208Pb, and 209Bi. The computed
results, along with relevant experimental data, are compared
in Figs. 6(a) and 6(b), respectively. Both Cook’s optical po-
tential and our systematic optical potential can reproduce the
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Rutherford scattering angular distributions of 6Li scattering from 28Si
at incident energy 318 MeV. (b) Elastic scattering angular distribu-
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scattering from 28Si at incident energy 350 MeV. The symbols repre-
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the calculated results with present systematic optical potential and
Cook’s, respectively. The hollow circles represent data points where
the ratio of the elastic scattering cross section to the Rutherford
scattering cross section is less than 1%. On the other hand, the solid
circles represent data points with a ratio larger than 1%.

experimental elastic scattering data with very similar results.
However, for targets 28Si and 39K at an incident energy of
34 MeV, the experimental data extends beyond 90 degrees in
the backward angle area, and neither our systematic optical
potential nor Cook’s systematic optical potential accurately
predict these data points. Further investigation is required
since the experimental data falls outside the limits of the
systematics. The observed discrepancy may be explained by
coupled-channel effects.

Figure 7(a) shows the elastic scattering angular distribu-
tions of 6Li with targets 120Sn, 208Pb, and 209Bi at energy
ranges of 40–50 MeV, while Fig. 7(b) displays the elas-
tic scattering angular distributions for targets 28Si, 89Y, and
90,92,94,96Zr at incident energies of 60 and 70 MeV. In
most cases, the calculated results using our systematic op-
tical potential and Cook’s both are very similar and agreed
well with the experimental data for all angular range ex-
cept for target 208Pb at incident energies of 43 and 46
MeV beyond 70◦, where both the current systematical OMP
and Cook’s calculations failed to accurately reproduce the
experimental data.

We also analyzed the elastic scattering angular distribu-
tions of 6Li colliding with various targets at the incident

energy of 72.7, 73.7, 75, 90, and 99 MeV. Specifically,
Fig. 8(a) displays the calculated results and experimental data
at incident energies of 72.7, 73.7, and 75 MeV, while Fig. 8(b)
displays the calculated results and experimental data at inci-
dent energies of 90 and 99 MeV. Again, the results obtained
by our systematic optical potential and Cook’s agree well
with the experimental data within the angular range of inter-
est. However, in the backward angles where no experimental
data exists for some of the 6Li scattering systems, the results
acquired from our systematic potential and Cook’s model
show apparent differences. Specifically, these systems include
6Li +24,26Mg at an incident energy of 72.7 MeV, 6Li + 28Si
at incident energies of 75, 90, and 99 MeV, 6Li + 40Ca at an
incident energy of 99 MeV, 6Li + 58Ni at incident energies of
73.7, 90, and 99 MeV, and 6Li + 90Zr at an incident energy of
99 MeV.

At high energies ranging from 156, 210, to 240 MeV, the
elastic scattering angular distributions of 6Li with different
targets are presented in Fig. 9. At an incident energy of
156 MeV, the results obtained using our systematic optical
potential and Cook’s potential demonstrate good agreement
with the experimental data, except for the 6Li + 28Si system,
which shows a phase mismatch. When considering an inci-
dent energy of 210 MeV, our systematic optical potential and
Cook’s potential also show good agreement with the exper-
imental data in forward angles for the 28Si, 40Ca, and 90Zr
targets. For large angles, specifically when the ratio of the
elastic scattering cross section to the Rutherford scattering
cross section is less than 1%, neither our systematic optical
potential nor Cook’s potential properly captures these data
points. In this region, the interference between the Coulomb
force and the nuclear force is relatively weak, resulting in a
relatively small contribution to theoretical analysis. For the
208Pb target at the same energy, our systematic potential re-
produces the experimental data well, while Cook’s potential
fails to correctly reproduce the experimental data. In addition,
at an incident energy of 240 MeV, both our systematic optical
potential and Cook’s potential exhibit good agreement with
the experimental data in the region where the ratio of the
elastic scattering cross section to the Rutherford scattering
cross section is greater than 1%. This region is characterized
by the dominance and importance of the interference between
the Coulomb and nuclear forces in our theoretical analyses.

The elastic scattering angular distributions of 7Li were
computed at different energies and target nuclei. Figure 10(a)
shows the distributions for targets 40,44,48Ca, 56Fe, 58,60Ni, and
90Zr at an incident energy of 34 MeV. On the other hand,
Fig. 10(b) illustrates the angular distributions for targets 28Si,
54Fe, 116Sn, 144Sm, and 208Pb at incident energies ranging
from 35 to 39 MeV. Both Cook’s and our systematic optical
potential yielded comparable outcomes to the experimental
elastic scattering data.

We also calculated the elastic scattering angular distribu-
tions of 7Li for various targets within an energy range of
40–48 MeV, including 54Fe, 58Ni, 118Sn, and 208Pb. Further-
more, we computed the elastic scattering angular distributions
of 7Li for targets 24,26Mg, 44,48Ca, 89Y, 142Nd, 144Sm, and
208Pb, at incident energies of 52, 60, and 88 MeV. We com-
pared our results with the relevant experimental data and
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FIG. 13. Reaction cross sections as a function of incident energies for projectile 6Li. The target nuclei are indicated in the figure. The
symbols represent the experimental data, the solid line represents the calculated results using our present systematic optical potential, and the
dashed line represents the results calculated using Cook’s optical potential. The experimental data are obtained from Refs. [51,61,72–76].

illustrated them in Fig. 11. The results obtained from Cook’s
and our optical potential give very similar results and are
within good agreement with experimental data, except for
incident energy of 88 MeV, where Er exceeds 5, calculated
results obtained by our systematic potential and Cook’s begin
to show some differences.

Figures 12(a) and 12(b) demonstrate the elastic scattering
angular distributions of 6Li + 28Si and 7Li + 28Si at higher
incident energies of 318 and 350 MeV, respectively. The shape
of the angular distribution of the experimental data is well re-
produced by both Cook’s and our systematic optical potential.
Nevertheless, our systematic optical potential produced more
accurate calculation results than Cook’s in forward angles.
Cook’s optical potential showed better performance in the tail
region of the angular distribution. However, the experimental
data in this area is negligible, approximately less than 0.01.

B. Reaction cross section

The reaction cross section is a crucial observable in the
optical model, frequently utilized in testing nuclear models
and gaining insights into the matter distribution of the projec-
tile, as well as providing indications about its structure [80].
Researchers have shown significant interest in this data over

the years. Precise measurements of an elastic scattering can
establish a suitable set of optical potential parameters corre-
sponding to a specific system. Using these optical potential
parameters, we can predict reaction cross sections for this
system. As a result, reaction cross sections can serve as essen-
tial constraints in phenomenological optical model analyses
[79]. Therefore, we used these data to validate our systematic
potentials.

Figure 13 displays the reaction cross section of 6Li as a
function of the incident energy in the laboratory frame for
various target nuclei. The experimental data are represented
by circles, while the calculated results using our optical po-
tential and Cook’s optical potential use solid and dashed
lines, respectively. In order to clearly demonstrate the cal-
culation results near the Coulomb barrier, we have included
detailed subgraphs in each figure. In panel (a), experimental
data around the Coulomb barrier were obtained from opti-
cal model fits conducted at four different energies [72]. Our
calculated results effectively reproduce the trend of the cross
section, dependent on the energy, and show good agreement
with the magnitude of the experimental data. Conversely, only
one experimental data point was available above 200 MeV
[73]. The experimental data are in the middle of the results
obtained by our systematic potential and Cook’s potential.
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FIG. 14. Same as Fig. 13 but for 7Li. The experimental data are obtained from Refs. [51,61,75–79].

Panel (b) presents reaction cross section data for 64Zn taken
from Refs. [74,75], and the calculated results still slightly
exceed these data. In panel (c), only the reaction cross sec-
tion extracted from elastic scattering data of 6Li + 116Sn were
available [61], and our computations match well with the
extracted data. Finally, panel (d) shows reaction cross sec-
tions near the Coulomb barrier for 208Pb taken from Ref. [51].
The computed results obtained using Cook’s potential and
our single folding potential are in agreement with the ex-
perimental data. Additionally, at 298 MeV, the reaction cross
sections on natPb were measured [76], and the results obtained
using both our optical potential and Cook’s optical potential
underestimate the experimental value. In general, the compar-
ison between the reaction cross section computed using our
single folding potential and the experimental data is not as
good as the results obtained using Cook’s potential. This is
mainly due to the averaging of the potential parameters over
the entire energy range during the fitting process. Locally, in
the energy region around the Coulomb barrier, the fitting is
not an optimal solution, as shown in Fig. 2(a).

Figure 14 illustrates the reaction cross sections of 7Li for
different target nuclei. Panel (a) presents the calculated reac-
tion cross sections for 28Si using our systematic single poten-
tial for 7Li and Cook’s potential, alongside the corresponding

experimental data [77–79]. The results obtained from our
single potential agree well with the experimental data. At
high energies, our single potential results better reflect the
experimental data than Cook’s potential. Panel (b) displays
the reaction cross sections for 64Zn with only experimental
data available at incident energies of 20 and 22 MeV [75].
Our computed results using the systematic potential align well
with the experimental data, whereas the results obtained from
Cook’s potential overestimate these data. In panel (c), the
reaction cross sections for 116Sn were calculated using our
current single potential and compared with the experimental
data [61]. Similarly, our computed results using the systematic
single folding potential align well with the experimental data,
while Cook’s potential overestimates these data. Panel (d)
presents the comparison of the reaction cross sections near
the Coulomb barrier for 208Pb using our systematic potential
and Cook’s potential, with the corresponding experimental
data from [51].The experimental data can be effectively re-
produced by our single folding potential and Cook’s potential.
For the 7Li + 208Pb system, high energy data [79] are available
and have been compared with the cross sections computed
using our single folding potential and Cook’s potential. Both
sets of results effectively reproduce the experimental data
within the experimental uncertainties.
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V. CONCLUSION

We developed a new energy-dependent systematic optical
potential for 6Li and 7Li based on the KD02 optical potential
within the framework of the single-folding model. The single-
folding model potential required only one free parameter
for renormalization purposes, and the renormalization factors
were obtained by fitting experimental elastic-scattering angu-
lar distributions for target nuclei with masses ranging from 24
to 209 at incident energies lower than 350 MeV, exhibiting
a good linear trend. Overall, our systematic optical potential
provides comparably predictive capabilities to the systematic
optical potential proposed by Cook [35], except for light target
nuclei at high energy where experimental data have shown
a high sensitivity to the inner portion of the optical model
potentials [81].

The single-folding model can be extended to other types
of projectiles. Therefore, calculations were conducted on 12C
and 16O nuclei, which yielded fitted Nr values of approx-
imately 0.5. However, the scarcity of experimental data in
high-energy regions has hindered the detection of clear pat-
terns in Nr . With the accumulation of more experimental data

for heavier nuclei at high energies, it may become feasible
to establish a systematic optical potential for these nuclei in
a similar way. Interestingly, 12C and 16O are tightly bound
nuclei with significantly different properties from 6Li and 7Li,
but the difference in their renormalization factors is minimal.
Further efforts should be made to investigate the similarities
and differences in the renormalization factors among different
projectiles.

The introduction of this novel single folding potential pro-
vides a potential solution to minimize systematic errors in
distorted wave calculations, such as transfer and inclusive
breakup. Specifically, all potentials utilized in the calcula-
tions are derived from the commonly employed KD02 global
potential.
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