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This study explores the application of Kolmogorov-Arnold networks (KANs) in predicting nuclear binding
energies, leveraging their ability to decompose complex multiparameter systems into simpler univariate func-
tions. By utilizing data from the Atomic Mass Evaluation (AME2020) and incorporating features such as atomic
number, neutron number, and shell effects, KANs achieved a significant lower root mean square error (0.26
MeV), surpassing traditional models. The symbolic regression analysis yielded simplified analytical expressions
for binding energies, aligning with classical models like the liquid drop model and the Bethe-Weizsäcker
formula. These results highlight KANs’ potential in enhancing the interpretability and understanding of nuclear
phenomena, paving the way for future applications in nuclear physics and beyond.
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I. INTRODUCTION

The atomic nucleus, a quintessential quantum many-body
system, exhibits remarkable structural complexity [1]. Bind-
ing energies (BE), synonymous with nuclear mass, are key
characteristics of atomic nuclei and play an indispensable role
in elucidating various nuclear phenomena. These phenom-
ena include nuclear shapes, shell effects, pairing effects, and
the emergence and disappearance of magic numbers [2–5].
Furthermore, binding energies are crucial in the synthesis
of superheavy elements and in understanding nuclear astro-
physical processes like the r-process [6] and x-ray bursts
[7]. Therefore, both theoretical predictions and experimental
measurements of nuclear binding energies are essential for
advancements in nuclear physics.

Over the years, numerous theories and methods have
been developed for predicting nuclear binding energies
[1,2,8–21]. These include the Bethe-Weizsäcker formula
[2,8], the Thomas-Fermi model [9], the Hartree-Fock-
Bogoliubov mean field model [10], and ab initio methods
[1,11,12]. These physics-based models have achieved com-
mendable results within their respective applicable ranges.
Concurrently, data-driven methods such as multilayer percep-
trons [13–18], Gaussian processes [19,20], and support vector
machines [20] have also found successful applications in the
prediction of atomic nucleus masses.

However, traditional physical models necessitate a pro-
found understanding of the inherent mechanisms of nuclear
physical systems and face challenges when managing com-
plex relationships. On the other hand, while data-driven
machine learning methods can handle complex non-linear
relationships, they often require substantial data and computa-
tional resources. In the data-rich field of nuclear physics, iden-
tifying intricate relationships among variables is a formidable
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challenge. This predicament underscores the need for innova-
tive approaches to handle the complexity of nuclear data and
to extract meaningful insights.

Kolmogorov-Arnold networks (KANs) offer a promising
solution [22]. KANs provide a simplified yet robust approach
by decomposing complex multi-parameter systems into man-
ageable univariate functions. This approach is based on the
Kolmogorov-Arnold representation theorem [23,24], which
asserts that any multivariate continuous function can be repre-
sented as a superposition of continuous univariate functions
over a compact domain. This theoretical foundation allows
KANs to handle complex, multi-parameter systems by break-
ing them down into simpler, univariate components.

One of the most compelling features of KANs in this
scientific context is their capability for symbolic regression.
Symbolic regression is a form of regression analysis that seeks
mathematical expressions, in symbolic form, that best fit a
given dataset. Unlike traditional numeric prediction models
that offer a fixed structure and limited insights into underlying
patterns, symbolic regression with KANs provides formulaic
expressions that reveal the inherent relationships and gov-
erning laws within the data. This significantly enhances our
understanding and offers a more profound and interpretable
model.

The ability to derive symbolic equations directly from data
can guide subsequent scientific research by offering clearer
insights into the relationships and mechanics at play in nu-
clear phenomena. Such insights are invaluable for advancing
theories, refining experimental designs, and developing new
technologies in nuclear science. Hence, KANs do not merely
predict but also illuminate the pathway towards a deeper
comprehension of the intricate dynamics that define nuclear
structures.

In the broader context of artificial intelligence (AI) ap-
plications in nuclear physics, there is a growing interest in
leveraging machine learning to study the intricate phenomena
of nuclear physics and derive formulas directly from data. The
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liquid drop model, which provides a macroscopic description
of the nucleus, has been instrumental in understanding nuclear
binding energies. AI techniques, particularly those involving
deep learning and symbolic regression, have the potential to
learn from vast amounts of nuclear data and derive simi-
lar or even more refined mass formulas. These data-driven
approaches can capture subtle patterns and correlations that
might be overlooked by traditional models, thus offering a
complementary perspective to theoretical frameworks. A sig-
nificant advantage of AI for physics is its ability to uncover
hidden relationships within complex datasets. In the current
study, we aim to derive mass formulas using AI, harnessing its
power to reveal insights that can enhance our understanding of
nuclear binding energies.

In this study, we aim to explore the potential of KANs
in predicting nuclear binding energies. By leveraging the
capabilities of KANs, we seek to bridge the gap between
data-driven insights and theoretical understanding, ultimately
contributing to the advancement of nuclear science. The pa-
per is organized as follows: In Sec. II, we provide a brief
overview of the Kolmogorov-Arnold network and the data
collection and feature selection used in the current study.
Sec. III presents the application of KANs to nuclear binding
energy. Finally, we conclude with a summary and discussion
in Sec. IV.

II. FORMALISM

A. Kolmogorov-Arnold network

The Kolmogorov-Arnold theorem asserts that any con-
tinuous multivariate function on a bounded domain can be
decomposed into a finite composition of continuous univariate
functions and addition. Specifically, for a continuous function
f : [0, 1]n → R:

f (x) = f (x1, x2, . . . , xn) =
2n+1∑
q=1

�q

⎛
⎝ n∑

p=1

φq,p(xp)

⎞
⎠. (1)

Here, x = (x1, x2, . . . , xn) is an n-dimensional vector with
each xi in [0, 1]. The functions φq,p : [0, 1] → R and �q :
R → R are continuous univariate functions. This decom-
position shows that addition is the only truly multivariate
operation, as all other multivariate functions can be built using
univariate functions and sums. This is useful for identifying
learnable and explainable patterns in data. However, practi-
cal challenges in machine learning arise due to the potential
non-smooth and fractal nature of the functions φq,p and �q,
complicating decomposition and learning processes.

Recent research by Liu et al. [22] has renewed interest in
the Kolmogorov-Arnold theorem and its use in neural net-
works. This has led to the creation of KANs. Liu et al. have
improved the original framework by allowing networks to
have any number of layers and widths. This overcomes the
original theorem’s limitations, which restricted it to two layers
of nonlinearities and a fixed number of terms (2n + 1). Since
most real-world functions are usually smooth and have simple
structures, these improvements help create more practical and
efficient Kolmogorov-Arnold representations.

FIG. 1. Architecture of a shallow KAN, featuring two input fea-
tures, a hidden layer with five nodes, and a single-node output layer.

In Fig. 1, a shallow KAN is illustrated. It consists of two
input variables, x1 and x2, a hidden layer with five nodes, and
a single output node. Each input is connected to the hidden
nodes through edges characterized by adaptable functions,
which replace the traditional fixed activation functions used
in multilayer perceptrons (MLPs).

These adaptable functions are expanded into basis func-
tions, specifically B-spline functions, which dynamically
adjust based on the input data. The outputs from the hidden
nodes are processed through additional spline-based edges,
culminating in a summation at the output node. This structure
allows for increasing the network depth, enabling the analysis
of more complex physical phenomena.

B. Data collection and feature selection

In this study, we used mass excess values from the Atomic
Mass Evaluation (AME2020) [25]. We focused on nuclei
with both the atomic number (Z) and neutron number (N)
greater than or equal to 8, covering 3456 nuclei. This selection
ensures the model’s precision1 and stability for larger, more
complex nuclei.

The experimental data are randomly divided into two sub-
sets: 2,856 nuclei for training and 600 nuclei for testing.
Figure 2 illustrates the selection of the training and test sets.
The nuclei in the training and test sets remain consistent
across all calculations.

To make the best use of our training set, we applied k-fold
cross-validation [27–29], which ensures that every data point
is used for both training and validation, maximizing the use of
available data. Initially, we employed the Fisher-Yates shuffle
algorithm [30] to ensure a thorough and unbiased randomiza-
tion of the dataset, then split the dataset into k parts (folds).

1In our study, accuracy refers to a qualitative performance
characteristic, expressing the closeness of agreement between a mea-
surement result and the value of the measurand, whereas precision
refers to the closeness of agreement between independent test results
obtained under stipulated conditions, as discussed in Ref. [26].
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FIG. 2. The training set (gray circles), test set (red circles) used
in the KANs. Both the training and test sets include nuclei from
AME2020.

In each iteration, k − 1 parts are used for training, and the
remaining part is used for validation. This process repeats k
times, with each part serving as the validation set once. Av-
eraging the performance across all iterations gives a reliable
measure of the model’s generalizability. In our calculations, k
is set to 3, thereby allocating 1/3 of the data for testing and the
remaining 2/3 for training in each cycle, with the initial ran-
domization facilitated by the Fisher-Yates shuffle algorithm to
ensure fairness and unpredictability in the distribution of data
points across folds.

We carefully selected data attributes to ensure the frame-
work’s effectiveness and accuracy. These include the atomic
number (Z), neutron number (N), and mass number (A). We
also included features from previous research [13,20,31], such
as pairing effects, shell closures, and asymmetry, which are
crucial for modeling nuclear binding energies.

Pairing effects are captured using ZEO and NEO, which
can only be either 1 or 0. Here, 1 indicates odd Z/N ratios,
and 0 indicates even ratios. This distinction helps the model
differentiate between various types of nuclei, each possessing
unique binding energy characteristics. Additionally, the term
A2/3 represents the surface effect, reflecting that a nucleus’s
surface area scales with the two-thirds power of its mass
number (A). This scaling is crucial for modeling the surface
contributions to the nucleus’s overall binding energy.

The isospin asymmetry, (N − Z ), measures the difference
between neutrons and protons. We also consider nuclear
magic numbers, with μZ and μN representing the excess
numbers of protons and neutrons relative to the nearest closed
shell. Key magic numbers include 8, 20, 28, 50, 82, 126, 184.

We also explore nuclear shells with Zshell and Nshell, reflect-
ing the orbital configurations of the last proton and neutron.
These values range from 0 to 5, depending on proton or
neutron counts within specific intervals. This helps the model
capture the shell structure’s influence on binding energy.

We evaluated various combinations of features to identify
the most informative attributes for predicting nuclear binding
energies. This approach helped us determine the optimal fea-
ture set for our KAN framework. Our network structure was
shallow, consisting of a single hidden layer with a uniform

TABLE I. Feature space and KANs’ structure.

Model Feature Structure

KAN-2 N, Z [2,12,1]
KAN-4 N, Z, A, N-Z [4,12,1]
KAN-9 N, Z, A, N-Z, A2/3, ZEO, NEO, [9,12,1]

μZ , μN

KAN-11 N, Z, A, N-Z, A2/3, ZEO, NEO, [11,12,1]
μZ , μN , Zshell, Nshell

width of 12 neurons. The detailed features and network struc-
ture are presented in Table I. According to the requirements
of Eq. (1), the number of nodes in the second layer should be
at least 2n + 1. Although this condition can be relaxed based
on the work in Ref. [22], we have chosen to use the maximum
value of n + 1 as the number of neurons in the hidden layer,
which in our case is 12.

To improve model performance and interpretability while
reducing overfitting, we used L1 regularization and cross-
entropy loss as described in Ref. [22]. The loss function is
defined as

Loss = (BEpred − BEexp)2

Np

+ λ

(
μ1

L−1∑
l=0

|�l |1 + μ2

L−1∑
l=0

S(�l )

)
, (2)

where |�l |1 is the L1 norm of the KAN layer, defined as the
sum of the L1 norms of all activation functions φi, j , including
nout outputs and nin inputs. The L1 norm of an activation
function, averaged over Np inputs, is given by

|φ|1 ≡ 1

Np

Np∑
s=1

|φ(x(s) )|. (3)

Thus, the L1 norm of a KAN layer is

|�|1 ≡
nin∑
i=1

nout∑
j=1

|φi, j |1. (4)

The entropy of a KAN layer is defined as

S(�) ≡ −
nin∑
i=1

nout∑
j=1

|φi, j |1
|�|1 log

( |φi, j |1
|�|1

)
. (5)

L1 regularization helps make the model simpler by adding
a penalty based on the absolute values of the model’s param-
eters. This leads to models with fewer nonzero parameters,
making them easier to interpret and less likely to overfit.
Cross-entropy loss ensures the model’s predictions are well
calibrated by measuring the difference between predicted and
actual probability distributions.

Combining these techniques, we aim to create a robust and
understandable model for predicting nuclear binding energies.
We used k-fold cross-validation [27–29] to test different parts
of the data, selected features carefully, and applied advanced
regularization techniques to ensure our KAN framework is
precise and generalizable. By exploring different features and
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FIG. 3. The absolute value of binding energy differences between KAN predictions using different features (see Table I) and AME2020
[25]. The RMSEs for all the data are also provided.

network structures, we gain insights into what affects model
performance, helping us develop better neural network archi-
tectures for nuclear physics.

III. RESULTS

Figure 3 shows the absolute differences in binding energy
between predictions from various KAN models and the ex-
perimental data from AME2020 [25]. The feature sets used in
these models are listed in Table I. Notably, the KAN-2 model,
which uses only basic properties such as neutron number
N and proton number Z , achieves a root mean square error
(RMSE) of just 0.87 MeV. This performance surpasses that of
many microscopic models [20], highlighting the effectiveness
of the KAN approach even with minimal input features. When
additional features are incorporated, the KAN-11 model re-
duces the RMSE even further to an impressive 0.26 MeV for
the entire data set. Furthermore, the nearly identical RMSEs
for both the training and test sets indicate the robustness
achieved through the k-folding method and KANs.

As more features, such as isospin asymmetry and mass
number, are included, the RMSE decreases, as illustrated in
Fig. 3, progressing from KAN-2 to KAN-4. However, both
models (KAN-2 and KAN-4) show a significant increase in
deviation error as nuclei approach closed shells. This error
distribution underscores the influence of shell effects on nu-
clear binding energy. By incorporating features related to shell
structure, models KAN-9 and KAN-11 achieve lower RMSEs.
Figure 3 demonstrates that these models perform better for
medium and heavy nuclei compared to light nuclei. Despite
efforts to enhance predictions by expanding the feature space,
the challenge of modeling light nuclei persists.

While we acknowledge that increasing the total number
of parameters can introduce complexity and potential issues,
it’s important to analyze this impact carefully. In our models,
we selected 30 basis functions to represent each activation
function. Although using more basis functions can better
approximate the “true activation function,” it also increases
the model’s parameter count and computational demands.
The required number of basis functions largely depends on the
properties of the selected basis functions and the behavior of
the activation functions they aim to approximate. Therefore,
selecting appropriate basis functions tailored to the specific
problem and dataset can significantly reduce the number of
parameters without compromising performance.

Previous research has explored various alternative basis
functions beyond traditional B-spline curves. Researchers
have experimented with sine functions, trainable adaptive
fractional-orthogonal Jacobi functions, wavelets, polynomi-
als, and rational functions based on Padé approximations and
rational Jacobi functions [32–35]. For instance, the devel-
opment of rational Kolmogorov-Arnold networks (rKANs)
utilizes rational functions as basis functions, offering im-
proved approximation capabilities while more effectively
managing the parameter scale [33]. These alternative basis
functions enhance the network’s ability to model com-
plex functions while optimizing computational efficiency.
Therefore, in KANs, the specific choice of basis functions is
not as critical; rather, the number of activation functions plays
a more significant role. Therefore we set the same width for
the hidden layer.

For all that, we can still compare the parameter scales of
different KANs. To assess the parameter scale, we note that
KAN-2 roughly contains 1080 free parameters; KAN-4 has
about 1800; KAN-9 has 3000; and KAN-11 has 4320 free
parameters. As mentioned earlier, for KAN-2 and KAN-4,
we deliberately increased the width of their hidden layers
to match the network scale of the more complex models. In
practical applications, similar RMSE can be achieved with a
narrower width. For example, for KAN-2, using architectures
like [2,5,1] or [2,12,1], we achieved comparable RMSE on
the dataset, and the parameter count of [2,5,1] is only 450—
less than half of the original. Additionally, by applying L1
regularization, we can prune unimportant branches to obtain a
smaller model, as demonstrated in Sec. III C.

We also compare our results with previous work. A re-
cent application of mixture density networks (MDNs), a
type of machine learning algorithm, resulted in errors of
about 0.5–0.6 MeV compared to AME2016 when combined
with physics-based features [15]. Gaussian process regression
(GPR) achieved errors ranging from 0.14 to 0.96 MeV for the
training set and 0.26 to 1.08 MeV for the test set compared
to AME2020, using different physical features as reported
in Ref. [20]. Support vector regression (SVR) reached errors
from 0.39 to 2.55 MeV for the test set and from 0.23 to 2.40
MeV for the training set compared to AME2020, as shown in
Ref. [20].

Meanwhile, Ref. [18] shows that Bayesian neural networks
(BNNs) can achieve a RMSE of 84 keV. They used even-even
nuclei as the foundation of their dataset and determined the

024316-4



KOLMOGOROV-ARNOLD NETWORKS IN NUCLEAR … PHYSICAL REVIEW C 111, 024316 (2025)

FIG. 4. Experimental single neutron separation energies for Ca, Zr, Nd, and Hg isotopic chains in comparison with the KAN predictions.

binding energies of surrounding nuclei by simultaneously pre-
dicting and combining the separation energies of neighboring
nuclei. Compared to these models, KAN achieves similar
RMSE, except for the BNN, which exhibits superior perfor-
mance. This result has already surpassed the performance of
most model-driven methods. For example, the correspond-
ing RMSEs are 0.285, 0.559, and 0.576 MeV for the WS4
[31], FRDM2012 [36], and HFB-31 [37] models, respectively.
Given that KAN is a novel technology, there is reason to
believe that ongoing developments will further enhance its
capabilities. As the technology matures, we can expect pre-
dictions to become even more accurate and precise, leading to
broader applications in nuclear physics and machine learning.

Fairly comparing training times among different models
is challenging due to variations in implementation, compu-
tational resources, and optimization strategies. However, as
noted in Ref. [22], while KANs offer the advantage of reduc-
ing network size compared to traditional MLPs, MLPs tend
to be more efficient in training networks of the same scale.
However, KANs possess distinct properties, such as the ability
to initiate training with a fewer number of basis functions for
approximating activation functions, gradually refining them as
needed. This capability allows us to start with a simpler model
to capture the fundamental shape of activation functions and
incrementally increase the basis functions to enhance de-
tail. This approach simplifies the training process and may
provide benefits in terms of interpretability and computational
efficiency. Furthermore, recent studies [32–35] have demon-
strated that various KAN variants are becoming increasingly
efficient, potentially paving the way for more effective imple-
mentations in diverse applications.

Figure 4 compares the separation energies for isotopic
chains of four different elements against the values in
AME2020. The absence of pairing terms in KAN-2 and
KAN-4 leads to much larger prediction RMSEs compared
to KAN-9 and KAN-11, which include these terms. This
difference is especially noticeable in the color variations rep-
resenting the absolute differences in binding energy between
the predictions from various KAN models and the exper-
imental data from AME2020, as shown in Fig. 3. These
variations are present in KAN-2 and KAN-4 but not in KAN-9
and KAN-11, highlighting the crucial role of pairing effects
in detailing nuclear structure. The single-neutron separation
energy curves in Fig. 4 further demonstrate the impact of

pairing. The difficulties faced by KAN-2 and KAN-4 models
with abrupt changes suggest that adding features like NEO

and ZEO could better model the pairing behavior in nuclear
binding energies, leading to improved performance in KAN-9
and KAN-11.

However, small differences remain in the calcium (Ca)
isotopic chain, as shown in Fig. 4. The model shows larger
RMSEs for light nuclei compared to medium and heavy nu-
clei. Light nuclei are more affected by interactions among
a few particles, while heavier nuclei are influenced by in-
teractions among many particles. This difference makes it
challenging to create a model that works well for all types of
nuclei. It suggests that we need a more advanced KAN model
to better understand the complex behavior of nuclear systems
across different mass regions.

A. Extrapolation

Extrapolating beyond the training dataset presents a signifi-
cant challenge for machine learning and deep learning models.
To evaluate the extrapolation capability of our KANs, we ini-
tially focused on nuclei at the edges of the AME2020 dataset
included in the test set—specifically, boundary isotopes and
isotones such as 92

59As, 91
58As, 90

57As, and 215
135Hg, 216

135Tl, 217
135Pb.

We observed that KANs could predict the binding energies
of these nuclei with reasonable RMSEs. However, since these
nuclei are very close to the data in the training set, a more
thorough assessment of the KANs’ ability to extrapolate was
deemed necessary.

To accomplish this, we compared the predictions of
our KANs with those from the finite-range droplet model
(FRDM2012) [36]. Figure 5 showcases the mass excess pre-
dictions made by KANs with various feature sets alongside
the results from FRDM2012. This dataset encompasses 9138
nuclei, ranging from 16O up to a mass number A = 339, sig-
nificantly extending beyond the scope of AME2020.

Our observations revealed that the KAN-4 and KAN-
11 models demonstrated good agreement with FRDM2012
across most regions, with many differences between these
models and FRDM2012 being within 50 MeV. Consider-
ing we are dealing with nuclei far from the known mass
boundaries, such discrepancies between different models are
deemed acceptable. The KAN-2 model, however, exhib-
ited limited extrapolation capability, which is understandable
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FIG. 5. The absolute value of mass excess differences between KAN predictions using different features (see Table I) and FRDM12’s
prediction [36].

given its minimal feature set. Interestingly, the KAN-9 model
showed signs of overfitting to a certain extent.

Furthermore, in regions significantly distant from the
training data, our KAN models exhibit larger deviations from
the results predicted by the physically motivated FRDM2012
model. This discrepancy can be attributed to two main factors.
First, the divergence among different models tends to increase
when extrapolating far beyond the known data regions. This
phenomenon is also observed in Refs. [17,20], where differ-
ences among various density functional models and machine
learning models are noted. Second, the use of B-splines as
basis functions for expanding the activation function means
the model’s behavior beyond the training set heavily relies
on the edge behavior of the B-spline curves. Essentially, the
extrapolation is influenced more by the polynomial behav-
ior at the boundaries rather than by the intended activation
functions.

A potential solution to improve extrapolation capabilities
could involve employing symbolic regression to replace the
polynomial expansion form. Functions derived from sym-
bolic regression may inherently possess better extrapolation
capabilities due to their flexibility and the ability to capture
underlying patterns more effectively.

On the other hand, as depicted in Fig. 6, when pre-
dicting isotopic chains extending ten neutrons beyond the
existing dataset, the KANs’ predictions closely align with
those from FRDM2012. This suggests that the KAN networks
have reliable extrapolation abilities in regions not too distant
from the training data, demonstrating stable and trustworthy
performance. It is also evident that KAN performs better on

heavy nuclei than on light nuclei, consistent with the observa-
tions made in Figs. 3 and 4.

B. Feature analysis

In Fig. 7 we show the structure of the trained KAN. To
clarify node connections, we adjust the transparency of lines
based on the mean value of the activation function φl,i, j for
each connection, represented by tanh(βAl,i, j ), where Al,i, j is
the mean activation. This technique highlights each variable’s
influence on the final output, aiding in understanding the
network’s behavior. Additionally, Fig. 7(b) illustrates the L1
norm for each connection, providing insights into the im-
portance of each link and identifying significant contributors
to the model’s performance. This dual visualization of mean
activation and L1 norm offers a comprehensive view of the
network’s workings and the relative importance of different
features and connections.

Our analysis indicates that the neutron number N exerts the
largest influence on the model’s predictions, as evidenced by
its highest L1 norm among the variables. The nucleon number
A and proton number Z also significantly impact the model,
with their L1 norms being large and comparable to that of
N . This suggests that N , A, and Z are the primary factors
influencing nuclear properties in our model.

The asymmetry term N − Z and the surface term A2/3 ex-
hibit moderate effects, highlighting their relevance but lesser
dominance compared to A, N , and Z . These terms are crucial
for capturing the nuances of nuclear structure, though their
impact is not as pronounced as the primary variables.

FIG. 6. Mass excess for Ca, Zr, Nd, and Hg isotopic chains compared with KANs predictions, FRDM12 (black points) [36], and
experimental data from AME2020 (cyan stars) [25].
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FIG. 7. Visualization of the trained network structure in the panel
(a). The transparency of the lines connecting nodes is proportional to
tanh(βAl,i, j ), where Al,i, j is the mean activation, enhancing the visi-
bility of connections. In panel (b), the L1 norm for each connection
is shown on a logarithmic scale, highlighting the significance of each
link.

Variables associated with nuclear shell structure and the
pairing term demonstrate minimal direct impact on the overall
results. Despite their subtle influence, these factors are es-
sential for accurate predictions of nuclear binding energies,
especially in astrophysics and nucleosynthesis, where high
accuracy and precision are paramount. Figures 3 and 4 show
that incorporating these terms, although they contribute less
directly, is vital for modeling.

These findings align with our calculations and are sup-
ported by results from other studies [13,15,20,31,38], rein-
forcing the validity of our approach and the robustness of our
model. This analysis underlines the primary drivers of nuclear
binding energy and emphasizes the importance of considering
all relevant factors, even those with less apparent impact, to
accurately capture the complexity of nuclear interactions.

It is important to note, however, that this analysis can only
provide approximate relationships between the variables. Due
to the inherent randomness in the training process—such as
the random initialization of model weights and the stochastic
nature of optimization algorithms—the exact values of the L1
norms may vary across different training sessions. This means
that while we can identify general patterns and trends, estab-
lishing absolute relationships between the variables based on
a single instance of training is not possible.

C. Symbolic regression

One of the most intriguing aspects of Kolmogorov-
Arnold networks (KANs) is their ability to directly derive
symbolic expressions from data, which enhances both the
interpretability and transparency of the predictive model. Un-
like traditional neural networks that employ fixed activation
functions—potentially obscuring underlying patterns—KANs
learn activation functions tailored to the data. These can
initially be represented using B-splines, which are smooth,
piecewise-defined functions.

To extract analytical formulas for nuclear binding en-
ergy from these learned activation functions, we establish a
function library composed of elementary functions and basic
functional forms, such as polynomials, exponentials, and log-
arithms. By utilizing the least-squares method, we adjust the

N N

BE BE

Z Z

a b

FIG. 8. Panel (a) shows the original trained network structure,
while panel (b) shows the symbolic network structure. Panels (c) and
(d) illustrate the absolute value of binding energy differences be-
tween predictions and data from AME2020 [25].

coefficients of these functions to best match the learned acti-
vation functions, effectively performing symbolic regression.
Afterward, by combining each activation function through
Eq. (1), we obtain the final expression, with specific details
available in Ref. [22].

To simplify the model and reduce complexity introduced
by periodic functions (like sine functions that may be in-
fluenced by pairing terms), we focus on even-even nuclei.
This selection minimizes the influence of pairing effects on
the activation functions. Additionally, we limit our study to
medium to heavy nuclei, with proton and neutron numbers
Z � 30 and N � 30, as these nuclei exhibit more uniform
behavior conducive to symbolic modeling.

We initially trained a KAN with a straightforward ar-
chitecture: two input neurons, one hidden layer with five
neurons, and one output neuron. To enhance network sparsity
and maintain performance while increasing the regularization
coefficient, we pruned connections with minimal impact on
the output. This pruning simplified the network to one with
two input neurons, one hidden layer containing two neurons,
and one output neuron. Remarkably, the final model achieved
a RMSE of 0.66 MeV. With this streamlined network, we
proceeded to perform symbolic regression on the learned ac-
tivation functions.

It’s important to acknowledge that approximating each
activation function with elementary mathematical functions
inevitably introduces some error. These approximation errors
can accumulate and propagate through the network, poten-
tially leading to larger discrepancies in the final predictions
compared to the original KAN model. Consequently, the
symbolic regression results may exhibit greater errors rela-
tive to the initial model. Nevertheless, the derived analytical
expressions provide valuable insights into the underlying
physical laws governing nuclear binding energies.

As illustrated in Fig. 8, transitioning from the original
network’s activation functions [the black line in Fig. 8(a)] to
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TABLE II. Parameter and its value for Eq. (6).

Parameter Value Parameter Value

Avol (MeV) 9.87917 AN (MeV1/2) 0.53670
Avol (MeV) –1.56157 AZ (MeV1/2) 2.93091
Acoul (MeV) 0.060169 n –1.06419
C1 (MeV) 13.08641 z 6.26334
C2 (MeV1/2) 11.76810

the symbolic network’s activation functions [the red line in
Fig. 8(b)] results in some loss of detail. These lost details
propagate through the network, leading to varying degrees
of error in the predictions. A comparison of the differences
between the original and symbolic models against experimen-
tal data [Figs. 8(c) and 8(d)] reveals underlying patterns: near
magic numbers 50, 82, and 126, the errors in the symbolic re-
sults are notably larger than those in the original results. This
suggests that the nuances not fully captured by the symbolic
approximations in the activation functions reflect structural
information about the nuclei—information that is crucial near
these magic numbers due to shell closures and associated
nuclear structure effects.

Despite not including variables explicitly related to shell
structure in our input features, the KAN demonstrated a ro-
bust capability to identify and learn these features directly
from the data. This ability underscores the strength of KANs
in capturing complex physical phenomena and validates the
effectiveness of our symbolic regression approach in revealing
and confirming underlying physical laws, even when working
with simplified models and limited input variables.

Below is the expression obtained through symbolic regres-
sion. After simplification, it can be presented in the following
form, and the parameters are listed in Table II:

BE (N, Z ) = AvolA − Asym(N − Z ) − AcoulZ
2

− [AN (N + n)2/3 − AZ (Z + z)2/3 + C2]2 − C1.

(6)

This expression for the binding energy achieves an RMSE
of 4.2 MeV for these even-even nuclei. Given that the binding
energies for nuclei in this range lie between 500 and 2100
MeV, this suggests that the formula retains less than 1% error.

When compared to the classical liquid drop model and the
Bethe-Weizsäcker formula, the initial three terms in the equa-
tion align with the volume, symmetry energy, and Coulomb
terms, respectively. The fourth term involves the square of the
difference between the cube roots of the neutron and proton
numbers, reflecting the surface energy effects of the nucleus.
Here, AN and AZ are the surface energy coefficients for neu-
trons and protons, respectively, and n and z are adjustments to
the neutron and proton numbers to capture more subtle nuclear
structural effects. C2, as a translation constant, adjusts the
overall level of the surface energy term. The final constant, C1,
shifts the entire energy expression to optimize the model fit.

It is also worth noting that an underlying relationship exists
between N and Z due to the stability and other properties of
nuclei. Classical distributions of nuclei often adhere to certain
N/Z ratios, as suggested by the Bethe-Weizsäcker formula.
This implies that N and Z are not entirely independent vari-
ables and can, to some extent, be interchanged. Therefore, the
derived analytical expression may not be unique.

As observed in Fig. 9 and consistent with our previous
analysis, the application of symbolic regression enhances
the stability of extrapolation. For the isotopic chains of Zr,
Nd, Hg, and Fm, the predictions obtained through sym-
bolic regression (depicted as blue squares) exhibit greater
stability compared to those from the original KAN approach
(represented by red dots). This indicates that symbolic re-
gression provides corrective effects of varying magnitudes at
the boundaries of the data, thereby improving the model’s
predictive performance in these regions.

However, it is important to acknowledge that symbolic
regression cannot entirely eliminate the issues associated with
extrapolating beyond the range of the available data. Such
extrapolation can lead to excessively weak constraints on
the predicted results, resulting in potential model failures.
Therefore, while symbolic regression contributes to improved
extrapolation stability, it does not fully overcome the inherent
limitations of extrapolation in machine learning models. Care
must still be taken when making predictions outside the scope
of the training data to ensure the reliability of the results.

IV. SUMMARY AND CONCLUSIONS

In this study, we have demonstrated the effectiveness of
KANs in predicting nuclear binding energies. By leveraging

FIG. 9. Mass excess for Zr, Nd, Hg, and Fm isotopic chains compared with KANs predictions, the results from symbolic regression,
FRDM12 (black points) [36], and experimental data from AME2020 (cyan stars) [25].

024316-8



KOLMOGOROV-ARNOLD NETWORKS IN NUCLEAR … PHYSICAL REVIEW C 111, 024316 (2025)

the capabilities of KANs to decompose complex multivariate
functions into univariate components, we have shown that
even with minimal input features, KANs can achieve sig-
nificantly lower RMSE, surpassing many traditional physics-
based models. The incorporation of additional features related
to isospin asymmetry, shell structure, and pairing effects fur-
ther reduces the RMSE of the predictions, emphasizing the
importance of these factors in modeling nuclear binding ener-
gies.

Our results show that KANs can effectively capture the
underlying physical relationships in nuclear data, achieving
a RMSE as low as 0.26 MeV for the entire dataset when
using an expanded set of features. The KAN models exhibit
robust performance across different regions of the nuclear
chart, particularly for medium and heavy nuclei. However,
challenges remain in modeling light nuclei, suggesting the
need for more advanced models or additional features to cap-
ture the complexities associated with few-body dynamics.

The symbolic regression analysis conducted in this work
yielded an analytical expression for nuclear binding energy
that aligns well with established models like the Bethe-
Weizsäcker formula. This expression incorporates key terms
such as volume energy, symmetry energy, Coulomb energy,
and surface energy, providing direct insight into the functional
dependencies within the nuclear data. While the symbolic
model exhibited marginally higher RMSE compared to the
original KAN model, it offers the advantage of improved
interpretability and potential for deeper theoretical under-
standing.

We also explored the extrapolation capabilities of KANs by
comparing their predictions with those from the finite-range
droplet model (FRDM2012) [36] for nuclei beyond the known
mass boundaries. The KAN models demonstrated reasonable
agreement with FRDM2012 for nuclei not too distant from the
training data, indicating stable and trustworthy performance
in extrapolation within similar regions. However, larger
deviations were observed when predicting nuclei far beyond
the training set, highlighting inherent limitations in extrapo-

lation and the need for caution when predicting properties of
nuclei in uncharted regions.

Overall, our study highlights the potential of KANs in nu-
clear physics applications, combining data-driven approaches
with theoretical insights to enhance predictive capabilities.
The ability of KANs to balance the error with model sim-
plicity and interpretability makes them a promising tool for
exploring complex systems where traditional methods may
face challenges.

Future work will focus on extending the application of
KANs to better model light nuclei and refine the network
architectures for improved performance. Additionally, fur-
ther exploration of symbolic regression techniques within the
KAN framework could lead to new theoretical developments
and more accurate models in nuclear physics and other fields
involving complex multivariate relationships.

An important direction for future research is the incorpora-
tion of uncertainty quantification, as demonstrated in recent
advancements with KANs [39]. By employing a Bayesian
approach and enhancing computational efficiency with meth-
ods like those proposed for ReLU-KANs, both epistemic
and aleatoric uncertainties can be effectively quantified [39].
This not only broadens the applicability of KANs to nuclear
physics by ensuring accurate identification of functional de-
pendencies in stochastic environments, but also enhances the
reliability and robustness of predictions. Implementing these
methods could pave the way for innovative applications in nu-
clear physics, providing insights into the model’s uncertainty
characteristics and revealing areas for improvement.
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