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We address the problem of evaluating neutron-transfer induced breakup cross sections caused by the Borromean 
nucleus 9Be, using the reaction 197Au(9Be,8Be)198Au as a test case. This reaction was recently measured over 
a wide range of incident energies around the Coulomb barrier. To deal with the high density of 198Au states 
that can be potentially populated in this reaction, we employ the Ichimura, Austern, Vicent model, in which 
the spectrum of physical states for this system is replaced by the solutions of a complex n+197Au potential, 
accounting effectively for the fragmentation of single-particle states into physical states. Furthermore, to account 
for the unbound nature of the emitted 8Be system, we employ a three-body model of 9Be. The calculated stripping 
cross sections are found to be in good agreement with existing data over a wide range of incident energies. The 
importance of taking into account the energy spread of the single-particle strength of the outgoing 8Be and the 
target-like residual nucleus is discussed.
1. Introduction

Experiments with light weakly-bound stable nuclei (such as 6,7Li and 
9Be) have shown a systematic suppression of complete fusion (CF) cross 
sections (defined as capture of the complete charge of the projectile) of 
∼20-30% compared to the case of tightly bound nuclei [1–7] as well 
as to coupled-channels calculations including the coupling to low-lying 
excited states of the projectile and target [1,3,8–10]. The effect has 
been attributed to the presence of strong competing channels, such as 
the breakup of the weakly bound projectile prior to reaching the fu-

sion barrier, with the subsequent reduction of capture probability. This 
interpretation is supported by the presence of large 𝛼 yields as well 
as target-like residues which are consistent with the capture of one of 
the fragment constituents of the projectile, a process which is usually 
termed as incomplete fusion (ICF).

In the case of 6,7Li reactions, a successful quantitative account of 
the CF cross section has been achieved using a model based on the 
Continuum-Discretized Coupled-Channels (CDCC) method [11,12] as 
well as using a novel method in which the CF cross section is obtained 
from the reaction cross section, after subtracting the dominant direct 
channels [13,14].

In the case of the 9Be projectile, measured above-barrier CF cross 
sections are found to represent ∼70% of those expected for well-bound 
nuclei [15]. Dedicated efforts have been devoted to identify the com-
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peting channels that are responsible for this apparent CF suppression. 
A promising candidate is the breakup following neutron transfer, which 
has been found to represent a significant part of the reaction cross 
section, notably exceeding the direct breakup of the projectile. Other 
experiments with 9Be have confirmed the dominant role of the one-

neutron stripping cross section [16,17].

To investigate the impact of the neutron stripping channel on the CF 
cross sections, one should first be able to accurately predict the cross 
sections for the former. These calculations face two main difficulties: (i) 
the outgoing 8Be core resulting from the one-neutron removal from the 
projectile is unbound, and (ii) the number of final states is very high, 
making it very difficult to resolve individual states. Moreover, even for 
those states that can be experimentally resolved, the spin-assignment 
and spectroscopic factors, which are key quantities required in standard 
distorted-wave Born approximation (DWBA), coupled-chanels Born ap-

proximation (CCBA) or coupled reaction channels (CRC) calculations, 
are poorly known for excitation energies above a few MeV. For exam-

ple, the CRC calculations presented in [16] for the 197Au(9Be,8Be)198Au 
reaction limited the states of 198Au below 700 keV, leaving out a signif-

icant part of the bound-state spectrum of this nucleus (𝑆𝑛 = 6.5 MeV).

In this work, we propose a new approach that aims to overcome 
the two aforementioned limitations. First, the unbound nature of the 
8Be system is accounted for by using a three-body description of the 
9Be projectile (𝛼 + 𝛼 + 𝑛). This allowed the calculation of the required 
Available online 31 May 2024
0370-2693/© 2024 The Author(s). Published by Elsevier B.V. Funded b
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: moro@us.es (A.M. Moro).

https://doi.org/10.1016/j.physletb.2024.138766

Received 7 May 2024; Received in revised form 28 May 2024; Accepted 29 May 202
y SCOAP³. This is an open access article under the CC BY license

4

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://orcid.org/0000-0002-0012-8894
mailto:moro@us.es
https://doi.org/10.1016/j.physletb.2024.138766
https://doi.org/10.1016/j.physletb.2024.138766
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2024.138766&domain=pdf
http://creativecommons.org/licenses/by/4.0/


G. Villanueva, A.M. Moro, J. Casal et al.

⟨8Be|9Be⟩ overlaps without resorting to an artificial n-8Be potential. 
Second, the high density of states of the target nucleus is incorporated 
in the reaction using the Ichimura, Austern, Vincent (IAV) model for 
inclusive breakup reactions. In this model, the physical spectrum of 
the neutron+target system is replaced by an approximate description 
in terms of a complex neutron+target optical potential, whose imagi-

nary part accounts for the fragmentation of the single-particle strength 
into the physical states. This avoids the need for the detailed knowl-

edge of the spin-assignment and associated spectroscopic factors of the 
populated states and enables a tractable description of this otherwise 
extremely complex reaction process without resorting to arbitrary trun-

cations of the spectrum of populated states.

The paper is organized as follows. In Sec. 2 we give a short overview 
of the reaction formalism and of the three-body model adopted for the 
description of the 9Be projectile. In Sec. 3 we present the results of the 
calculations for 197Au(9Be,8Be)198Au. Finally, the main conclusions of 
the work are given in Sec. 4.

2. Theoretical formalism

2.1. Reaction framework

We revisit the derivation of the IAV formula, with emphasis in the 
modifications required to account for the composite (and unbound) 
structure of the spectator system. A more detailed description of the 
method can be found in the original work of IAV [18] as well as in more 
recent applications [19–22]. We consider the scattering of a three-body 
projectile (𝑎 = 𝑏 + 𝑥, with 𝑏 = 𝑏1 + 𝑏2) off a target 𝐴. We assume that 
𝑥 is structureless and that the 𝑏 + 𝐴 interaction is described by some 
optical potential, while the 𝑥 +𝐴 interaction is given by a microscopic 
potential. Therefore, the full Hamiltonian of the system is expressed as

𝐻 = 𝑇𝑎𝐴 + 𝑉𝑥𝐴(𝑟𝑥, 𝜉𝐴) +𝑈𝑏𝐴(𝑟𝑏𝐴) + 𝑇𝑏𝑥 + 𝑉𝑏𝑥(𝑟𝑏𝑥, 𝜉𝑏), (1)

where 𝜉𝑏 and 𝜉𝐴 denote the degrees of freedom of the core and target 
systems.

The differential breakup cross section for the population of an ex-

cited state of the 𝑥 +𝐴 system is given by

𝑑2𝜎

𝑑Ω𝑏 𝑑𝐸𝑏
= 2𝜋
ℏ𝑣𝑖
𝜌(𝐸𝑏)

∑
𝑓

𝛿(𝐸𝑖 −𝐸𝑓 )

× |⟨𝜒 (−)
𝑏

(𝑘⃗𝑏)𝜙𝑏Φ
𝑓

𝑥𝐴
|𝑉post |Ξ(+)⟩|2 (2)

where 𝜌(𝐸𝑏) is the density of states of 𝑏 particles, 𝜙𝑏(𝜉𝑏) is the core 
wavefunction, 𝑉post = 𝑉𝑏𝑥 + 𝑈𝑏𝐴 − 𝑈𝑏𝐵 with 𝑈𝑏𝐵 an auxiliary and, in 
principle, arbitrary potential generating the distorted wave 𝜒 (−)

𝑏
, Φ𝑓

𝑥𝐴

are the states of the 𝑥 +𝐴 system, and Ξ(+) is the exact solution, with 𝑎 +
𝐴 incident channel, of the full model Hamiltonian. The delta function 
ensures energy conservation, with 𝐸𝑖 =𝐸𝑓 =𝐸𝑏 + 𝜀

𝑓
𝑥𝐴

≡𝐸.

IAV make use of the DWBA approximation, so that the total wave-

function is approximated as Ξ(+) ≈ 𝜒 (+)𝑎 (𝑟𝑎)𝜙𝑎(𝑟𝑏𝑥, 𝜉𝑏)𝜙𝐴(𝜉𝐴), where 
𝜙𝑎(𝑟𝑏𝑥, 𝜉𝑏) and 𝜙𝐴(𝜉𝐴) represent the ground state wavefunctions of the 
projectile and target, respectively, and 𝜒 (+)𝑎 (𝑟𝑎) is a distorted wave, so-

lution of a potential 𝑈𝑎, typically describing 𝑎 +𝐴 elastic scattering.

By expressing the energy-conserving delta function in Eq. (2) as the 
imaginary part of an energy denominator, the sum over final 𝑥 + 𝐴
states can be performed using completeness of these states, leading to 
a closed-form expression for the inclusive breakup cross section. For 
many applications, it is convenient to separate the elastic and nonelastic 
breakup (NEB) cross sections, distinguishing the situation in which the 
target is left in its ground state from the case in which it undergoes some 
kind of excitation. This separation can be formally performed using the 
techniques proposed by Kasano and Ichimura [23]. The final formula 
for the NEB part results:

𝑑2𝜎NEB = − 2𝜋
𝜌(𝐸𝑏)⟨𝜑𝑥(𝑘⃗𝑏)|𝑊𝑥𝐴|𝜑𝑥(𝑘⃗𝑏)⟩ (3)
2

𝑑Ω𝑏 𝑑𝐸𝑏 ℏ𝑣𝑖
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where 𝑣𝑖 is the relative velocity in the entrance channel, 𝑊𝑥𝐴 is the 
imaginary part of the 𝑥 + 𝐴 optical potential 𝑈𝑥𝐴 and 𝜑𝑥(𝑘⃗𝑏, ⃗𝑟𝑥) the 
𝑥-channel wavefunction

𝜑𝑥(𝑘⃗𝑏, 𝑟𝑥) =𝐺
opt(+)
𝑥𝐴

⟨𝑟𝑥𝜙𝑏𝜒 (−)𝑏 (𝑘⃗𝑏)|𝑉post |𝜒 (+)𝑎 𝜙𝑎⟩ ≡𝐺opt(+)
𝑥𝐴

𝜌𝑥(𝑘⃗𝑏, 𝑟𝑥) (4)

with

𝐺
opt(+)
𝑥𝐴

(𝐸 −𝐸𝑏) =
1

(𝐸+ −𝐸𝑏 − 𝑇𝑥𝐴 −𝑈𝑥𝐴)
(5)

and 𝜌𝑥 the source term

𝜌𝑥(𝑘⃗𝑏, 𝑟𝑥) = ⟨𝑟𝑥𝜙𝑏𝜒 (−)𝑏 (𝑘⃗𝑏)|𝑉post |𝜒 (+)𝑎 𝜙𝑎⟩. (6)

The NEB accounts for breakup processes that involve any kind of 
excitation of the 𝑥 + 𝐴 system, including transfer or the formation of 
some 𝐴 + 𝑥 compound nucleus. In the present work, we are interested 
in processes in which the 𝑥 + 𝐴 system is left in a bound state (i.e., 
transfer). In that case, the 𝑥-channel 𝜑𝑥(𝑘⃗𝑏, ⃗𝑟𝑥) function obeys the usual 
asymptotic decaying form for bound states.

We now deal with the degrees of freedom of the core, which are 
present in 𝜙𝑏, in 𝑉post (through 𝑉𝑏𝑥) and also in the total wavefunction 
Ξ(+). At this point, we make the simplifying assumption that the tran-

sition operator 𝑉post does not alter the state of the 𝑏 system, in which 
case the channel wavefunction can be rewritten as

𝜑𝑥(𝑘⃗𝑏, 𝑟𝑥) =𝐺
opt(+)
𝑥𝐴

⟨𝑟𝑥 𝜒 (−)𝑏 (𝑘⃗𝑏)|𝑉post |𝜒 (+)𝑎 𝑓𝑎𝑏⟩ (7)

where we have introduced the overlap function between the projectile 
and the residual nucleus after the particle transfer,

𝑓𝑎𝑏(𝑟𝑏𝑥) ≡ ∫ 𝑑𝜉𝑏 𝜙
∗
𝑏
(𝜉𝑏)𝜙𝑎(𝑟𝑏𝑥, 𝜉𝑏). (8)

In the present work, the projectile is 𝑎 ≡ 9Be in its ground state, while 
the ejectile 𝑏 ≡ 8Be is unbound with respect to the alpha emission and 
can be found in a series of continuum states characterized by its relative 
angular momentum 𝐿 and the relative energy 𝐸𝛼𝛼 .

The transition operator contains the potential 𝑉𝑏𝑥, which is not well 
defined in the three-body model of 𝑎. It is therefore convenient to 
transform the above expression to its prior-form counterpart, in which 
this potential does not appear explicitly in the matrix element. This 
is accomplished by using the following identity (see e.g., Eq. (9a) of 
Ref. [24] or Eq. (4.18) of Ref. [18]):

𝜑
post
𝑥 (𝑘⃗𝑏, 𝑟𝑥) = 𝜑

prior
𝑥 (𝑘⃗𝑏, 𝑟𝑥) +𝜑HM𝑥 (𝑘⃗𝑏, 𝑟𝑥), (9)

where

𝜑HM𝑥 (𝑘⃗𝑏, 𝑟𝑥) = ⟨𝑟𝑥|𝜑HM𝑥 (𝑘⃗𝑏)⟩ = ⟨𝑟𝑥𝜒 (−)𝑏 (𝑘⃗𝑏)|𝜒 (+)𝑎 𝑓𝑎𝑏⟩, (10)

and

𝜑
prior
𝑥 (𝑘⃗𝑏, 𝑟𝑥) =𝐺

opt(+)
𝑥𝐴

⟨𝑟𝑥 𝜒 (−)𝑏 (𝑘⃗𝑏)|𝑉prior |𝜒 (+)𝑎 𝑓𝑎𝑏⟩ (11)

with 𝑉prior ≡𝑈𝑥𝐴 +𝑈𝑏𝐴 −𝑈𝑎. The NEB double differential cross section 
for the detection of 𝑏 is then calculated by inserting (9) into Eq. (3).

2.2. Structure input

The present calculations require a description of the 9Be ground 
state, the 8Be continuum states and their corresponding overlaps. Due 
to the Borromean structure of 9Be, these can be obtained within a three-

body (𝛼+𝛼+𝑛) model with effective pairwise interactions, provided the 
same 𝛼+ 𝛼 potential is used to generate the two-body 8Be states. In this 
work, we adopt the 9Be model of Refs. [25,26], which is built within 
the hyperspherical harmonics expansion method. The 𝛼-𝑛 interaction is 
modeled with the Woods-Saxon potential in Ref. [27], including cen-

tral and spin-orbit terms, while the Ali-Bodmer potential is employed 
for the 𝛼-𝛼 interaction [28]. Both nuclear potentials include repulsive-
core components to account for the Pauli principle. The electrostatic 
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Fig. 1. Norm of the overlaps between the 9Be g.s. and the 8Be continuum pseu-

dostates for different relative angular momenta 𝐿, as a function of the 𝛼-𝛼

relative energy up to 20 MeV. Dashed lines are included as a guide.

repulsion between the 𝛼’s is described with a hard-spheres Coulomb in-

teraction, and an additional three-body force is included to correctly 
reproduce the separation energy of the 9Be ground state.

Since 8Be is unbound, overlaps will be a function of the contin-

uum energy 𝐸𝛼𝛼 . For simplicity, we compute the 8Be states using a 
pseudostate method, i.e., expanding the state in a discrete basis of 
square-integrable functions. For this purpose, we employ the analyt-

ical transformed harmonic oscillator (THO) basis [29,30]. We obtain 
8Be pseudostates for relative angular momenta 𝐿 = 0, 2 and 4, in a ba-

sis of 40 THO functions with parameters 𝑏 = 1.6 fm and 𝛾 = 1.4 fm1∕2. 
Then we compute the overlaps between each pseudostate and the 9Be 
ground state by integrating over the relative 𝛼-𝛼 coordinates, for spe-

cific orbital configurations of the neutron. The norm of the overlaps, 
for the 9Be neutron in the 𝑝3∕2 orbital, is shown in Fig. 1. The low-lying 
peak corresponds to the 0+ ground-state resonance of 8Be at ∼0.10 MeV 
above threshold, which exhausts ∼38% of the total 9Be norm. The re-

maining 0+ states add up to 53% of the norm. These weights can be 
regarded as spectroscopic factors within the three-body model. In turn, 
the weight of the 2+ and 4+ states is 44% and 1%, respectively. The 
former is concentrated around 3 MeV, i.e., the nominal energy of the 
2+1 resonance in 9Be. The latter is rather small, so 4+ states will not be 
considered for the reaction calculations. Note that other neutron orbital 
configurations in the wave function are negligible compared to those 
considered here.

Some characteristic radial overlaps, for 8Be pseudostates around 
the 0+ and 2+ nominal resonance energies, are shown in Fig. 2. The 
latter presents a smaller norm, since the 2+ strength is more evenly dis-

tributed according to Fig. 1. For comparison, the inset also shows the 
microscopic overlap from variational Monte Carlo calculations (VMC) 
for the 0+ state, which corresponds to a spectroscopic factor (SF) of 
0.595 [31,32], and with a phenomenological overlap obtained with a 
Woods-Saxon potential (𝑅0 = 1.25 ×91∕3 fm, 𝑎 = 0.65 fm), whose depth 
is fixed to get a separation energy of 𝑆𝑛 = 1.665 MeV. When adjusted 
to have the same norm, it is shown that the present 0+ overlap matches 
the correct asymptotic behavior, in contrast to the VMC one, which typi-

cally has problems describing the wave function tails. It should be noted 
that our overlap corresponds to a single 0+ pseudostate (with norm 
0.38) and not the whole 0+ continuum, thus its magnitude is smaller 
than that of the VMC one. Note also that our total norm is smaller than 
the VMC SF, and this may have an effect on the cross sections, as will 
be discussed later.

2.3. Choice of interactions

The IAV formula (3) requires optical potentials for the entrance 
(9Be+197Au) and exit (8Be+198Au) channels, as well as for the core-
3

core system appearing in the transition operator (8Be+198Au). All these 
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Fig. 2. Radial overlaps for specific 8Be pseudostates: 0+ at 0.10 MeV (black 
solid), 2+ at 3.06 MeV (red dashed). Inset: 0+ overlap, in logarithmic scale, 
compared with VMC data for the 0+ (see the text).

interactions are taken from the double-folding global Sao Paulo poten-

tial (SPP) [33], with the required densities parametrized in terms of 
two-parameter Fermi distributions with parameters obtained from a sys-

tematic fit of Dirac-Hartree-Bogoliubov calculations and experimental 
electron scattering data. For the imaginary part, we used the same ra-

dial dependence as the real part, scaled by a standard renormalization 
factor 𝑁𝑖 = 0.78 [34]. In the 8Be + 197,198Au cases, the optical poten-

tial may not be well defined due to the unbound nature of 8Be. As we 
show below, most of the calculated cross section is due to the 8Be(g.s.), 
which corresponds to a very narrow resonance in which the two al-

phas remain highly correlated for a long time before decaying. This 
may serve as a posteriori justification for the use of an optical potential 
for this system. The calculation requires also the neutron-target inter-

action at negative neutron energies. In the spirit of the IAV formalism 
this potential should be dispersive so that its real part should account 
for the centroids of the relevant single-particle configurations whereas 
the imaginary part should describe the fragmentation of the single-

particle strength due to beyond-mean-field effects, such as the coupling 
with core-excited states of 197Au [35,36]. According to a Hartree-Fock 
calculation with the SkX interaction [37], the bound single-particle con-

figurations above the Fermi level are: 1𝑖11∕2 (𝜖 = −0, 97 MeV), 2𝑔9∕2
(-2.46 MeV), 2𝑔7∕2 (-0.255 MeV), 3𝑑5∕2 (-1.13 MeV), 3𝑑3∕2 (-0.42 MeV) 
and 4𝑠1∕2 (-0.907 MeV). We found that the Koning-Delaroche global 
potential [38] predicts the same bound-state configurations, with dif-

ferences in the energies of less than 1 MeV. Therefore, we have adopted 
this potential for the reaction calculations. It is worth noting that, to 
reduce the computational demands, we neglected the intrinsic spin of 
the transferred neutron, so the spin-orbit partners collapse into a single 
configuration located at their centroid.

3. Results

The measured data are doubly inclusive with respect to the final 
state of the residual nucleus (198Au) as well as with respect to the state 
of the outgoing 8Be∗ (i.e., 2𝛼) system. Expression (3) provides the en-

ergy distribution of the residual nucleus for a given internal state of the 
8Be core. Therefore, for a meaningful comparison with the data, one 
needs to evaluate this expression for a range of 8Be states including all 
relevant relative angular momenta and energies between the two 𝛼’s. 
Due to the discretization of the 8Be states, this translates into a sum of 
the contribution for the different pseudostates. For illustrative purposes 
we show in Fig. 3 the differential cross section, at an incident energy 
of 𝐸cm = 36 MeV, as a function of the excitation energy of the 198Au 
system for two selected pseudo-states of 8Be: a 0+ characterizing the 
ground state of the system and a 2+ pseudostate around the nominal 
energy of the lowest 2+ state. It is seen that the cross section is largely 

dominated by the former, that is, the two 𝛼’s are preferably emitted 
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Fig. 3. Differential energy cross section at 𝐸cm = 36 MeV, as a function of the 
198Au excitation energy, for two final states of the 8Be∗ system: the 0+ ground-

state and a state around the nominal energy of the first 2+ resonance. The 
vertical dashed line marks the neutron separation energy in 198Au.

Fig. 4. Decomposition of energy differential cross section at 𝐸cm = 36 MeV, for 
8Be in its 0+ ground state, in terms of the relative orbital angular momentum 
between the transferred neutron and the target. The inset shows the integrated 
contribution of each 𝑛 + 197Au orbital angular momentum. The vertical arrows 
indicate the position of the single-particle states of the 𝑛 + 197Au potential.

in its ground-state resonance. Note that for a meaningful comparison 
with the data, only the bound state region of the 198Au system must 
be considered, so the differential cross section must be integrated from 
𝐸𝑥 = 0 to 𝐸𝑥 = 𝑆𝑛 (indicated by a vertical dashed line in the plot). The 
partial-wave decomposition in terms of the relative angular momentum 
𝑙𝑛 between the transferred neutron and the 197Au target is shown in 
Fig. 4 for the case in which 8Be is produced in its ground state reso-

nance. It is seen that 𝑙𝑛 = 0, 2 and 4 dominate the cross section, with 
peaks around the single-particle bound states of the adopted 𝑛 + 197Au 
potential (located at 𝐸𝑥 = 5.42, 5.38 and 4.39 MeV, indicated by the ar-

rows), respectively. Note that within the IAV scheme, the single-particle 
strength is spread in energy and some part extends into the unbound re-

gion (i.e. 𝐸𝑥 > 𝑆𝑛). Notice also that, with the adopted potential, most of 
the odd-𝑙𝑛 strength lays also in the continuum and will not contribute 
to the cross section of interest.

As already stated, the procedure should be repeated for all pseu-

dostates considered in the structure calculation of 8Be. In Fig. 5 we show 
the differential cross section as a function of 𝐸𝛼−𝛼 . Note that, in a pseu-

dostate description, we obtain a series of discrete cross section for each 
final 8Be state, and then these results are translated into a continuous 
differential cross section following the procedure used, for instance, in 
[39]. This distribution reflects, in part, the weights of the different 8Be 
configurations in the 9Be projectile wave function displayed in Fig. 1, 
but also the reaction dynamics that seem to favor the population of the 
4

0+ ground-state resonance over other states.
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Fig. 5. Differential cross section, at 𝐸cm = 36 MeV, as a function of the 𝛼-𝛼

relative energy in the final 8Be∗ system for 0+ states (solid line) and 2+ states 
(dashed line). The states selected for Fig. 3 are highlighted with a symbol.

Fig. 6. Angle-integrated total transfer cross section as a function of 𝐸cm. The 
contribution from the 0+ (dot-dashed line) and 2+ (dotted) states of 8Be, to-

gether with their sum (blue solid), are compared to the experimental data and 
the CRC calculation (green solid) of Ref. [16]. The IAV result rescaled by the 
VMC spectroscopic factors (dashed) is also shown (see text).

We then perform the same calculations at different incident energies 
from 𝐸cm = 20 to 50 MeV, in order to compare with the experimental 
data of Ref. [16]. The results are presented in Fig. 6. It is seen that 
the 0+ states of 8Be dominate over a wide range of incident energies, 
and that the 2+ contribution is significant only above 𝐸cm = 40 MeV. 
Adding the two contributions, the cross section matches reasonably well 
both the trend and magnitude of the experimental data, except for a no-

ticeable underestimation at the highest energies considered. Here, it is 
worth noting that the structure of 9Be is computed within an effective 
three-body model that can only treat the Pauli principle approximately. 
As a consequence, the weights of our different 8Be configurations add 
up to unity, while the SF coming from microscopic calculations such as 
VMC, considering actual antisymmetrization and occupation numbers, 
are larger. Thus, we may tentatively rescale our calculations by the VMC 
spectroscopic factors of 0.595 and 0.603 for the 0+ and 2+ states, re-

spectively. The results are also shown in Fig. 6, where an improvement 
is obtained in the region where the 2+ contribution is important, due to 
a larger difference between the three-body weight and the correspond-

ing VMC SF. Nevertheless, the present IAV calculations with structure 
overlaps from an effective three-body model can explain the main fea-

tures of the experimental cross section. In the figure we show also the 
coupled-reaction-channel (CRC) calculations presented in the original 
experimental work [16]. In this calculation, only states of 198Au up to 
∼ 700 keV excitation energy included, due to computational limitations. 
The result was not able to describe the inclusive transfer data. A pos-
sible explanation for the difference with our IAV result is the missing 
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Fig. 7. Same as Fig. 6, but comparing the full IAV calculation (solid line) with 
IAV and standard DWBA calculations in which one ignores the energy spread of 
the 8Be states and 198Au states in the overlaps ⟨8Be|9Be⟩ and ⟨198Au|197Au⟩, re-

spectively. All overlaps are normalized to the prediction of the VMC calculation 
of [31].

strength up to the separation threshold of 198Au (𝑆𝑛 = 6.5 MeV), which 
we include effectively with the choice of the 𝑛-197Au optical potential. 
We have also compared our results with those reported by Kaushik et 
al. [17], where the same reaction was measured and compared with 
CRC calculations. In these calculations, the authors include states of 
the residual nucleus up to 𝐸𝑥 = 1.56 MeV (assuming unit spectroscopic 
factors for all states) and obtain a good agreement with the (9Be,8Be) 
data, with a dominance of the 8Be(2+) state in the full energy range. 
Our test calculations suggest, however, that both effects (the seemingly 
good agreement with the data and the 8Be(2+) dominance) might be a 
byproduct of the unjustified assumption of unit spectroscopic factors for 
the considered states, and the omission of higher exited states of 198Au.

As noted above, the two main novelties of the present approach with 
respect to more standard DWBA calculations (or their extended CCBA 
and CRC versions) are the consideration of the energy distribution of 
the 8Be and 198Au states which enter the reaction calculations through 
the overlap functions ⟨8Be|9Be⟩ and ⟨198Au|197Au⟩, respectively. It is 
therefore instructive to compare these results with those obtained from 
more standard calculations, neglecting the effect of the energy distribu-

tion of these overlaps, that is, in which the full strength for each overlap 
is concentrated in a single state with a definite energy. The results of 
these test calculations are summarized in Fig. 7, which is presented in 
linear scale to better highlight the differences between the different cal-

culations. The blue solid line is the original IAV calculation, in which 
the energy spreading of the structure overlaps is considered for both the 
8Be and 198Au states. In the dot-dashed line, the ⟨8Be|9Be⟩ overlaps of 
the 0+ and 2+ states of 8Be are represented by the pseudostates closest 
to the nominal energies of the associated resonances, i.e., 0.1 MeV and 
3.06 MeV, and renormalized to give the SF predicted by the VMC calcu-

lation. An apparent increase is observed with respect to the original IAV 
calculation, overestimating the data for energies below 𝐸cm = 42 MeV. 
Finally, the dotted line is a standard DWBA calculation in which the en-

ergy distribution of both overlaps is neglected. In 198Au, we consider a 
pure single-particle state for each 𝑛𝑙𝑗 configuration located at the nom-

inal energy predicted by the real part of the KD potential. Restricting to 
the bound-state configurations, only the 𝑙𝑛=0,2,4 and 6 waves are con-

sidered. As in the IAV calculations, the spin-orbit term is not considered, 
so these configurations are degenerate in 𝑗𝑛 (where 𝑗𝑛 = 𝑙𝑛 + 𝑠). This 
calculation produces a further increase in the calculated transfer cross 
section, overestimating the data in the full energy range. Therefore, 
from these calculations, we conclude that consideration of the energy 
spread of the structure overlaps is an important ingredient for a quan-

titative description of the experimental data. A question remains about 
the apparent underestimation at the highest energies considered. A pos-
5

sible reason for this difference may be attributed to configurations of 
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the 9Be nucleus not explicitly considered here, and this calls for further 
theoretical investigations.

4. Summary and conclusions

In summary, we have presented a new methodology to evaluate 
inclusive transfer cross sections induced by a Borromean nucleus like 
9Be. We have considered the stripping reaction 197Au(9Be,8Be)X which 
has been recently measured at energies below and above the Coulomb 
barrier. The proposed strategy incorporates two key ingredients with 
respect to more standard approaches. First, the dense spectrum of the 
final 198 Au states is described approximately using a complex neutron 
+ target potential, whose imaginary part accounts for the energy distri-

bution of the single-particle strengths. Second, the required ⟨8Be|9Be⟩
overlaps, including unbound states of 8Be, are computed with a three-

body model for the 9Be projectile. This, again, permits the incorporation 
of the energy spread of the 8Be states.

Aside from providing a more consistent treatment of the structure 
and reaction dynamics, the calculations based on this new methodology 
describe better the available experimental data for the studied reac-

tion, as compared to more standard approaches. Moreover, the present 
method would allow the evaluation of more detailed cross sections, such 
as differential cross sections with respect to the scattering angles of the 
8Be system or for the relative energy between the two outgoing alphas 
[40].

The present work may pave the way towards a better understanding 
of the impact of neutron-induced breakup on the fusion cross sections 
and, in particular, on the above-barrier complete fusion suppression 
reported for this and other 9Be-induced reactions.
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